Ultrasonic biometric imaging and identity verification system

Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06296610

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to the art of surface scanning and imaging, and more particularly to a new and improved ultrasonic method and apparatus for surface scanning and imaging.
One area of use of the present invention is in fingerprint scanning and imaging, although the principles of the present invention can be variously applied to scanning and imaging subdermal and other biometric structures. The quality of the images obtained using ultrasound technology is superior as compared to those obtained using optical technology since the ultrasonic images are less dependent on the surface condition of the finger. As a result, by using ultrasound technology, individuals with very dry or very oily fingers, contaminated fingers or fingers having irregular ridge surfaces are able to be imaged equally as well.
In providing an ultrasonic method and apparatus for scanning and imaging fingerprints, subdermal and other biometric structures, there are a number of important considerations. One is obtaining higher quality images which, in turn, requires that the resolution of the system be as high as possible so that the resolution of the resulting images is as high as possible. Another important consideration is improved system performance. One example is performing the scanning as quickly as possible so as to minimize delay and inconvenience and avoid any discomfort to the individual. Related to the foregoing considerations is increased reliability of the system and its operation. Additional important considerations are ease of manufacture and lowering the cost of manufacture.
SUMMARY OF THE INVENTION
It is, therefore, a primary object of this invention to provide a new and improved ultrasonic method and apparatus for imaging human and animal tissue.
It is a more particular object of this invention to provide such a method and apparatus which results in high resolution and high quality images.
It is a further object of this invention to provide such a method and apparatus wherein scanning is performed at a very fast rate.
It is a further object of this invention to provide such a method and apparatus which is highly reliable.
It is a further object of this invention to provide such apparatus which is relatively easy and economical to manufacture.
The present invention provides an ultrasonic imaging system and method for imaging human or animal tissue having a surface and including probe means comprising means for defining the surface in a manner supporting the human or animal tissue for imaging the same, transducer means positioned closely adjacent the supporting means for providing an output ultrasonic beam directed on the surface so that the size of the beam at its focal point is as small as possible to maximize the resolution of the system and electrically operated motive means for moving the transducer means in a manner such that the ultrasonic beam is directed in a path along the surface. A fluid-tight housing means extends from the means defining the tissue-supporting surface and has an interior region containing the transducer means and motive means which region is filled by an electrically non-conductive fluid having an acoustic impedance substantially equal to that of water and having a viscosity sufficiently low so as not to impede the movement of the transducer means. The housing is provided with means for accommodating thermal expansion and contraction of the fluid. In one aspect of the invention, the motive means comprises motor means having an output shaft for providing oscillatory output motion and means for coupling the output shaft to the transducer means so that in response to oscillation of the shaft the output ultrasonic beam is directed in the path along the surface. An encoder means is mounted on the shaft between the motor and coupling means to minimize any distortion in the information provided by the encoder means. The coupling means is in the form of an elongated arm having a structure of sufficient rigidity so as not to bend or flex during oscillation of the motor shaft while having minimal drag as the arm moves through the fluid.
The transducer is oscillated about successive arcuate paths along the area being scanned, and a two dimensional linerization process is performed on the data obtained.
In alternative embodiments, the oscillatory output of the motor can be assisted by a flexure spring means, the transducer can be moved by a continuously rotating motor with a slip-ring commutator for making electrical connection to the transducer, and the transducer can be moved linearly in orthogonal directions by the combination of a rotary motor with motion conversion means and a linear actuator.
The scanner of the present invention can be employed in biometric identification and verification systems wherein the imaging system is utilized in combination with a record member containing a recorded biometric image and a processor for performing comparisons.


REFERENCES:
patent: 4167180 (1979-09-01), Kossoff
patent: 4233988 (1980-11-01), Dick et al.
patent: 4282880 (1981-08-01), Gardineer et al.
patent: 5647364 (1997-07-01), Schneider et al.
patent: 5935071 (1999-08-01), Schneider et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ultrasonic biometric imaging and identity verification system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ultrasonic biometric imaging and identity verification system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ultrasonic biometric imaging and identity verification system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2597720

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.