Electric heating – Metal heating – By arc
Reexamination Certificate
2001-07-05
2003-04-29
Dunn, Tom (Department: 1725)
Electric heating
Metal heating
By arc
C219S121680, C219S121690, C219S121800, C359S285000
Reexamination Certificate
active
06555781
ABSTRACT:
BACKGROUND
The present invention relates to precision laser scanning for machining or cleaning a work piece. More particularly, the present invention relates to a method and apparatus for high precision laser scanning for micro machining, sub-micro machining, or cleaning using an ultrashort pulsed laser beam and an acoustooptical deflection device. The present invention is useful for high-precision machining of a variety of structures, including photolithographic masks. The invention is not intended to be limited to the above-noted uses, however.
Laser machining has significant applications in the automobile, aerospace and electronics industries for cutting, drilling and milling. Salient features of laser machining include the ability to make small and unique structures and the ability to process hard-to-work materials such as ceramics, glasses and composite materials. High-power CO
2
and YAG lasers are conventionally used for laser machining. However, conventional laser machining suffers from problems including rough machining kerf, existence of a recast layer and large heat-affected zone, and restriction to large feature sizes. Hence, conventional laser machining is not suitable for precision micromachining.
In contrast, in machining based upon ultrashort pulsed lasers, the mechanism of material removal is different from that of conventional lasers. Moreover, the heat affected zone is negligibly small, and the melt zone is virtually absent in ultrashort pulsed laser machining. Hence, laser machining using ultrashort laser pulses is suitable for precision micromachining.
One aspect of ultrashort pulsed laser machining (also referred to as ablation) of interest is the effect of beam polarization. PCT Patent Publication No. WO 99/55487 entitled “Method and apparatus for improving the quality and efficiency of ultrashort-pulse laser machining” by Hoang et al. discloses controlling the polarization of an ultrashort pulsed laser beam in a machining process. However, the physical mechanism underlying the relationship between polarization and its effect on machining has not been explained.
In addition, in conventional ultrashort pulsed laser machining, features are generated by scanning the ultrashort pulsed laser beam using mechanical scanning systems, such as galvano mirrors. A main disadvantage of these systems is that they are prone to vibration, which can adversely affect the positional accuracy of the scanned beam. This effect can be very detrimental in attempts to machine features of submicron size. Also, the use of mechanical scanning systems limits scanning speed and spatial resolution of the system.
Applicants have recognized that using acoustooptic devices instead of mechanical systems for beam scanning can avoid the above-noted vibration problem. Applicants have also recognized that the use of acoustooptic devices can lead to noticeable dispersion of the ultrashort pulsed laser beam. It would be desirable to have an ultrashort pulsed laser scanning system where dispersion from acoustooptic devices is compensated.
SUMMARY
It should be emphasized that the terms “comprises” and “comprising”, when used in this specification, are taken to specify the presence of stated features, integers, steps or components; but the use of these terms does not preclude the presence or addition of one or more other features, integers, steps, components or groups thereof.
In one aspect of the invention, a precision laser-scanning apparatus is provided. The precision laser-scanning apparatus comprises a laser source that emits a pulsed laser beam, a dispersion compensation scanner that scans the pulsed laser beam, and a focusing unit that focuses the pulsed laser beam from the dispersion compensation scanner on a work piece. The dispersion compensation scanner comprises a first scanning device that scans the pulsed laser beam in a first direction and that causes dispersion of the pulsed laser beam. The dispersion compensation scanner further comprises a first dispersion compensation device that compensates for the dispersion caused by the first scanning device.
The pulsed laser beam may have a wavelength in the range of approximately 100 nm to approximately 1500 nm, a pulse width in the range of approximately 1 microsecond to approximately 1 femtosecond, and a pulse repetition rate in the range of approximately 10 hertz to approximately 80 megahertz. In addition, the dispersion compensation scanner may have a scanning resolution in the range of approximately 1 nanometers to approximately 100 micrometer depending on the scanning range. Further, the dispersion compensation scanner may have a scanning random access time in the range of approximately 0.01 microseconds to 100 microseconds depending on the rise time of the acoustic crystal.
In another aspect of the invention, the pulsed laser beam of the precision laser-scanning apparatus may have a pulse energy and an intensity sufficient to machine a surface of work piece. The apparatus may have a spatial machining resolution in the range of approximately 0.05 micron to approximately 100 micron. Further, the apparatus may have a spatial machining resolution of approximately one-twentieth of a cross-sectional diameter of the pulsed laser beam in a focused state at the surface of the work piece. Moreover, the apparatus may further comprise a polarization converter that provides a polarization state to the pulsed laser beam. The polarization converter may be selected from the group consisting of a quarter-wave plate, a half-wave plate, and a depolarizer. In addition, the polarization converter may be selected to provide the polarization state depending upon a desired shape of a machined feature to be generated on a surface of the work piece or depending upon an ablation threshold of the work piece. Further, the polarization state may be selected to be one of a linear polarization state for machining an elliptical feature, a circular polarization state for machining a circular feature, and a random polarization state for machining a circular feature.
In another aspect of the invention, the apparatus may further comprise a beam filter that spatially filters the pulsed laser beam and provides the pulsed laser beam with a desired cross-sectional size. The beam filter may comprise a pin hole with a diameter approximately equal to or greater than a desired spot size of the pulsed laser beam when focused onto the work piece, a first focusing lens that focuses the pulsed laser beam onto the pin hole, a second focusing lens that collimates the pulsed laser beam emanating from the pin hole, and a diaphragm that blocks an outer portion of the pulsed laser beam emanating from the second focusing lens.
In another aspect of the invention the dispersion compensation scanner may further comprise a second scanning device that scans the pulsed laser beam in a second direction different (or perpendicular) from the first direction and that causes dispersion of the pulsed laser beam, wherein the first dispersion compensation device compensates for dispersion caused by both the first scanning device and the second scanning device. The first and second scanning devices may be acoustooptic devices, and the first dispersion compensation device may be a diffraction grating having a line spacing suitable for compensating the dispersion caused by the first and second scanning devices. Alternatively, the first dispersion compensation device may be an acoustooptic device. The first and second scanning devices are acoustooptic deflectors, and the first dispersion compensation device is an acoustooptic modulator that further provides modulation of the pulsed laser beam wherein the beam is selectively transmitted or blocked with a precision ranging from 1 nanosecond to 20 microseconds. The first and second scanning devices may be oriented such that the first direction is perpendicular to the second direction, and the first dispersion compensation device may be oriented at an angle relative to the first scanning device such that the first dispersion compensation device produces a ne
Ngoi Bryan Kok Ann
Venkatakrishnan Krishnan
Burns Doane , Swecker, Mathis LLP
Dunn Tom
Nanyang Technological University
Stoner Kiley
LandOfFree
Ultrashort pulsed laser micromachining/submicromachining... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ultrashort pulsed laser micromachining/submicromachining..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ultrashort pulsed laser micromachining/submicromachining... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3077500