Optics: measuring and testing – For light transmission or absorption
Patent
1995-08-25
1998-01-06
Font, Frank G.
Optics: measuring and testing
For light transmission or absorption
356445, G01N 2100, G01N 2155
Patent
active
057060940
ABSTRACT:
Disclosed herein is a method and a system for non-destructively examining a semiconductor sample (30) having at least one localized region underlying a surface (30a) through into which a selected chemical species has been implanted or diffused. A first step induces at least one transient time-varying change in optical constants of the sample at a location at or near to a surface of the sample. A second step measures a response of the sample to an optical probe beam, either pulsed or continuous wave, at least during a time that the optical constants are varying. A third step associates the measured response with at least one of chemical species concentration, chemical species type, implant energy, a presence or absence of an introduced chemical species region at the location, and a presence or absence of implant-related damage. The method and apparatus in accordance with this invention can be employed in conjunction with a measurement of one or more of the following effects arising from a time-dependent change in the optical constants of the sample due to the application of at least one pump pulse: (a) a change in reflected intensity; (b) a change in transmitted intensity; (c) a change in a polarization state of the reflected and/or transmitted light; (d) a change in the optical phase of the reflected and/or transmitted light; (e) a change in direction of the reflected and/or transmitted light; and (f) a change in optical path length between the sample's surface and a detector.
REFERENCES:
patent: 4484820 (1984-11-01), Rosencwaig
patent: 4522510 (1985-06-01), Rosencwaig et al.
patent: 4579463 (1986-04-01), Rosencwaig et al.
patent: 4632561 (1986-12-01), Rosencwaig et al.
patent: 4636088 (1987-01-01), Rosencwaig et al.
patent: 4679946 (1987-07-01), Rosencwaig et al.
patent: 4710030 (1987-12-01), Tauc et al.
patent: 4750822 (1988-06-01), Rosencwaig et al.
patent: 4795260 (1989-01-01), Schuur et al.
patent: 4854710 (1989-08-01), Opsal et al.
patent: 4952063 (1990-08-01), Opsal et al.
patent: 4999014 (1991-03-01), Gold et al.
patent: 5042951 (1991-08-01), Gold et al.
patent: 5042952 (1991-08-01), Opsal et al.
patent: 5074669 (1991-12-01), Opsal
"Studies of High-Frequency Acoustic Phonons Using Picosecond Optical Techniques", H.J. Maris, et al., Phonon Scattering in Condensed Matter 5, Eds. A.C. Anderson, J.C. Wolfe, Springer, Berlin, 1986, p. 374, (no month available).
"Picosecond Photoinduced Electronic And Acoustic Effects In a-Si:H Based Multilayer Structures", H.T. Grahn, et al., Journal of Non-Crystalline Solids 97&98 (1987) pp. 855-858 (no month available).
"Picosecond Acoustics As A Non-Destructive Tool For The Characterization Of Very Thin Films", C. Thomsen, et al., Thin Solid Films, 154 (1987) pp. 217-223 (no month available).
"Time-resolved study of vibrations of a-Ge:H/a-Si:H multilayers", H.T. Grahn, et al. Physical Review B, vol. 38, No. 9, Sep. 15, 1988, page no. not available.
"Picosecond Ultrasonics", Holger T. Grahn, et al., IEEE Journal of Quantum Electronics, vol. 25, No. 12, Dec. 1989, pp. 2562-2569.
"Nondestructive Testing of Microstructures by Picosecond Ultrasonics" H.N. Lin, et al., Journal of Nondestructive Evaluation, vol. 9, No. 4, 1990, pp. 239-246.
"Photon Attenuation and Velocity Measurements in Transparent Materials by Picosecond Acoustic Interferometry", H.N. Lin, et al. Journal of Applied Physics, vol. 69, p. 3860 (Apr. 1991).
"Attenuation of longitudinal-acoustic phonons in amorphous SiO.sub.2 at frequencies up to 440 GH.sub.z ", T.C. Zhu, et al., The American Physical Society 1991, pp. 4281-4289.
"Detection of Titanium Silicide Formation And Phase Transformation by Picosecond Ultrasonics", H.N. Lin, et al., Mat. Res. Soc. Proc. Advanced Metalization and Processing for Semiconductor Devices III, vol. 260, p. 221 (1992).
"Ultrasonic Experiments At Ultra-High Frequency With Picosecond Time-Resolution", H.N. Lin, et al., IEEE Ultrasonics Symp 1990, page nos. not available.
"Picosecond Optics Studies Of Vibrational And Mechanical Properties of Nanostructures", H.J. Maris, et al., AMD-vol. 140, Acousto-Optics and Acoustic Microscopy ASME 1992, pp. 134-148.
"Picosecond optical studies of amorphous diamond and diamondlike carbon: Thermal conductivity and longitudinal sound velocity", Christopher J. Morath, et al, J. Appl. Phys., vol. 76, No. 5, Sep. 1, 1994, p. 2636.
"Study of vibrational modes of gold nanostructures by picosecond ultrasonics", H.N. Lin, et al., J. Appl. Phys. vol. 73, No. 1, Jan. 1, 1993, pp. 37-45.
"Nondestructive detection of titanium disilicide phase transofrmation by picosecond ultrasonics", H.H. Lin, et al., Applied Physics Letters, No. 61, p. 2700, 1992.
"Surface Generation and Detection of Phonons By Picosecond Light Pulses" C. Thomsen et al. Physical Review B. vol. 34, No. 6, Sep. 15, 1986, The American Physical Society, pp. 4129-4138.
"Sound Velocity and Index of Refraction of AlAs Measured By Pico-second Ultrasonics", H.T. Grahn, et al. Appl. Phys. Lett. 53(21), Nov. 21, 1988 pp. 2023-2024.
"Elastic Properties of Silicon Oxynitride Films Determined by Pico-second Acoustics" by H.T. Grahn et al., Appl. Phys. Lett. 53 (23), Dec. 5, 1988, pp. 2281-2283.
"Noninvasive picosecond ultrasonic detection of ultrathin interfacial layers: CFx at the Al/Si interface" by G. Tas, R. J. Stoner and H.J. Maris, Appl Phys. Lett. 61 (15). Oct. 12, 1992 pp. 1787-1789.
"Detection Of Thin Interfacial Layers By Picosecond Ultrasonics" by G. Tas, R.J. Stoner J. Maris, G.W. Rubloff, G.S. Oehrlein and J.M. Halbout, Mat. Res. Soc. Symp. Proc. vol. 259 1992 Materials Research Society, pp. 231 236 (no month available).
W. Lee Smith et al. "Ion implant monitoring with thermal wave technology". Appl. Phys.Lett.. vol. 47. No. 6, Sep. 15, 1985. pp. 584-586.
J. Opsal et al. "Thermal and plasma wave depth profiling in silicon", Appl. Phys. Lett. vol. 47 No. 5 , Sep. 1, 1985. pp. 498-500.
A. Rosencwaig et al. "Thin-film thickness measurements with thermal waves". Appl. Phys. Lett., vol. 43 No. 2, Jul. 15, 1983. pp. 166-168.
A. Rosencwaig et al. "Detection of thermal waves through optical reflectance". Appl. Phys. Lett., vol. 46 No. 11, Jun. 1, 1985. pp. 1013-1015.
A. Elci et al. "Physics of Ultrafast Phenomena in Solid State Plasmas". Solid-State Electronics, vol. 21, 1978, pp. 151-158 (no month available).
D.H. Auston et al. "Picosecond Spectroscopy of Semiconductors". Solid-State Electronics, vol. 21, 1978, pp. 147-150 (no month available).
D. H. Auston et al. "Picosecond Ellipsometry of Transient Electron-Hole Plasmas in Germanium". Physical Review Letters, vol. 32 No. 20. May 20, 1974 pp. 1120-1123.
R.J. Stoner et al. "Kapitza conductance and heat flow between solids at temperatures from 50 to 300K". Physical Review B, vol. 48, No. 22, Dec. 1, 1993 pp. 16 373-16 387.
R.J. Stoner et al. "Measurements of the Kapitza Conductance between Diamond and Several Metals". Physical Review Letters, vol. 68 No. 10, Mar. 9, 1992 pp. 1563-1566.
S. Sumie et al. "A New Method of Photothermal Displacement Measurement by Laser Interferometric Probe". Jpn. J. Appl. Phys. vol. 31 Pt. 1, No. 11, 1992 pp. 3575-3583 (no month available).
S. Sumie et al. J.Appl. Phys. 76(10), Nov. 15, 1994 pp. 5681-5689.
F.E. Doany et al. "Carrier lifetime versus ion-implantation dose in silicon on sapphire". Appl. Phys. Lett. 50(8), Feb. 23, 1987 pp. 460-462.
D.A. Young et al. "Heat Flow in Glasses on a Picosecond Timescale". Dept. of Engineering, Brown University, Providence, RI. 1986. pp. 49-51 (no month available).
Brown University Research Foundation
Font Frank G.
Merlino Amanda
LandOfFree
Ultrafast optical technique for the characterization of altered does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ultrafast optical technique for the characterization of altered , we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ultrafast optical technique for the characterization of altered will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2333806