Ultra-thin expandable stent

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Arterial prosthesis – Stent structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06224626

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to expandable medical implants for maintaining support of a body lumen.
An important use of stents is found in situations where part of the vessel wall or stenotic plaque blocks or occludes blood flow in the vessel. Often, a balloon catheter is utilized in a percutaneous transluminal coronary angioplasty procedure to enlarge the occluded portion of the vessel. However, the dilation of the occlusion can cause fissuring of atherosclerotic plaque and damage to the endothelium and underlying smooth muscle cell layer, potentially leading to immediate problems from flap formation or perforations in the vessel wall, as well as long-term problems with restenosis of the dilated vessel. Implantation of stents can provide support for such problems and prevent re-closure of the vessel or provide patch repair for a perforated vessel. Further, the stent may overcome the tendency of diseased vessel walls to collapse, thereby maintaining a more normal flow of blood through that vessel.
Examples of prior developed stents have been described by Balcon et al., “Recommendations on Stent Manufacture, Implantation and Utilization,” European Heart Journal (1997), vol. 18, pages 1536-1547, and Phillips, et al., “The Stenter's Notebook,” Physician's Press (1998), Birmingham, Mich. The first stent used clinically was the self-expanding “Wallstenf” which comprised a metallic mesh in the form of a Chinese fingercuff. These stents were cut from elongated tubes of wire braid and, accordingly, had the disadvantage that metal prongs from the cutting process remained at the longitudinal ends thereof. The inherent rigidity of the cobalt based alloy with a platinum core used to form the stent together with these terminal prongs made navigation of the blood vessels to the locus of the lesion difficult as well as risky from the standpoint of injury to healthy tissue along the passage to the target vessel. Furthermore, once placed, the continuous stresses from blood flow and cardiac muscle activity created significant risks of thrombosis and damage to the vessel walls adjacent to the lesion, leading to restenosis. A major disadvantage of these types of stents were that their radial expansion was associated with significant shortening in their length, resulting in unpredictable longitudinal coverage when fully deployed.
Among subsequent designs, some of the most popular have been the Palmaz-Schatz slotted tube stents. Originally, the Palmaz-Schatz stents consisted of slotted stainless steel tubes comprising separate segments connected with articulations. Later designs incorporated spiral articulation for improved flexibility. These stents are delivered to the affected area by means of a balloon catheter, and are then expanded to the proper size. The Palmaz-Schatz designs exhibit moderate longitudinal shortening upon expansion, with some decrease in diameter, or recoil, after deployment. Furthermore, the expanded metal mesh is associated with relatively jagged terminal prongs, which increase the risk of thrombosis and/or restenosis.
Another type of stent involves a tube formed of a single strand of tantalum wire, wound in a sinusoidal helix; these are known as the Wiktor stents. They exhibit increased flexibility compared to the Palmaz-Schatz stents; however, they do not provide sufficient scaffolding support for many applications, including calcified or bulky vascular lesions. Further, the Wiktor stents also exhibit some recoil after radial expansion.
Another form of metal stent is a heat expandable device using Nitinol or a tin-coated, heat expandable coil. This type of stent is delivered to the affected area on a catheter capable of receiving heated fluids. Once properly situated, heated saline is passed through the portion of the catheter on which the stent is located, causing the stent to expand. Numerous difficulties have been encountered with this device, including difficulty in obtaining reliable expansion, and difficulties in maintaining the stent in its expanded state.
Self-expanding stents are problematic in that exact sizing, within 0.1 to 0.2 mm expanded diameter, is necessary to adequately reduce restenosis. However, self-expanding stents are currently available only in 0.5 mm increments. Thus, greater flexibility in expanded size is needed.
Stents can be deployed in a body lumen by means appropriate to their design. One such method would be to fit the collapsed stent over an inflatable element of a balloon catheter and expand the balloon to force the stent into contact with the body lumen. As the balloon is inflated, the problem material in the vessel is compressed in a direction generally perpendicular to the wall of the vessel which, consequently, dilates the vessel to facilitate blood flow therethrough. Radial expansion of the coronary artery occurs in several different dimensions and is related to the nature of the plaque. Soft, fatty plaque deposits are flattened by the balloon and hardened deposits are cracked and split to enlarge the lumen. It is desirable to have the stent radially expand in a uniform manner.
Alternatively, the stent may be mounted onto a catheter that holds the stent as it is delivered through the body lumen and then releases the stent and allows it to self-expand into contact with the body lumen. This deployment is effected after the stent has been introduced percutaneously, transported transluminally and positioned at a desired location by means of the catheter.
In summary, significant difficulties have been encountered with all prior art stents. Each has its percentage of thrombosis, restenosis and tissue in-growth, as well as various design-specific disadvantages. Thus, there is a need for an improved stent: one that has relatively smooth marginal edges, to minimize restenosis; one that is small enough and flexible enough when collapsed to permit delivery to the affected area; one that is sufficiently flexible upon deployment to conform to the shape of the affected body lumen; one that expands uniformly to a desired diameter, without change in length; one that maintains the expanded size, without significant recoil; and one that has sufficient scaffolding to provide a clear through-lumen.
SUMMARY OF THE INVENTION
The present invention is a radially expandable support device, or stent, for use in an artery or any other body lumen. The expandable intraluminal stent comprises a tubular member formed from at least one series of overlapping ladder elements. Each ladder element has two elongated ribs and two end rungs affixed to the elongated ribs. The elongated ribs are slidably engaged by a portion of the end rungs of adjacent ladder elements, such that sliding of the elongated ribs creates a variable distance between the end rungs of adjacent ladder elements. The tubular member has a first diameter in which the distance between end rungs of adjacent ladder elements is collapsed, and a second diameter, in which the distance between end rungs of adjacent ladder elements is expanded.
The elongated ribs may have a plurality of slots adapted to engage a lockout tab on the end rung of an adjacent ladder element. The slotted-ribs and lockout tabs permit the end rungs to slide apart, thereby expanding the diameter of the tubular member. However, the lockout tabs engage the slots to prevent the end rungs from sliding back toward a more collapsed state.
The expandable stent may expand from the first collapsed diameter to the second, expanded diameter upon application from inside the tubular member of a radially outwardly extending force. Alternatively, the tubular member may self-expand to the second, expanded diameter upon removal of a restraint, which holds the tubular member in the first, collapsed diameter.
The expandable stent in accordance with one embodiment of the present invention may be made from an alloy selected from the group consisting of stainless steel, elgiloy, tantalum, titanium and Nitinol. In a variation, the stent may be made from at least one biodegradable material selected from the group consisting of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ultra-thin expandable stent does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ultra-thin expandable stent, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ultra-thin expandable stent will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2528316

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.