Ultra pure hemoglobin solutions and blood-substitutes

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C530S385000, C530S427000

Reexamination Certificate

active

06506725

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a process for producing a novel semi-synthetic blood substitute and the novel semi-synthetic blood substitute resulting therefrom. The novel semi-synthetic blood substitute is a hemoglobin preparation characterized by its purity, its exceptionally low levels of endotoxin, the absence of non-hemoglobin proteins, and its molecular cross-linking profile. The semi-synthetic blood substitute has no toxic activity when used in a substitute fashion and possesses the property of reversibly binding gaseous ligands such as oxygen and is useful for transporting and supplying oxygen to vital tissues and organs. Additionally, the blood substitute serves as a blood plasma expander for management of disease and for maintaining circulatory integrity. A further aspect of the invention is the preursor or intermediate, the substantially pure, phospholipid-free, endotoxin-free hemoglobin solution in uncross-linked form.
DESCRIPTION OF BACKGROUND MATERIALS
Complex multicellular organisms are equipped with specialized tissues which are concerned with the processes of nutrition and excretion. It is the primary function of blood to provide a link between various organs and cells of the body. Blood, red cells, plasma and other components maintain a constant cellular environment by circulating through every tissue and continuously delivering nutrients to the tissues and removing waste products and various tissues which are concerned with the tissue secretions from them. PHYSIOLOGY, Third Edition, Edited by Edward E. Selkurt, Page 223 (1971). Blood is a viscous fluid composed of cells and plasma. More than 99% of the cells are red blood cells. The major function of red blood cells is to transport hemoglobin, which in turn carries oxygen from the lungs to the tissues and CO
2
from the tissues to the lungs. Normal red blood cells contain approximately 34 grams of hemoglobin per 100 ml of cells. Each gram of hemoglobin is capable of combining with approximately 1.33 ml of oxygen. See Guyton, A. C., BASIC HUMAN PHYSIOLOGY: NORMAL FUNCTION IN MECHANISMS OF DISEASE, Pages 84-85 (1971).
Because of the critical and ongoing need for a therapeutic agent useful as a blood substitute for carrying and supplying oxygen and as a blood plasma expander, intense research efforts have been directed to the development of an adequate blood substitute. The need for a blood substitute exists for replacing blood lost by acute hemorrhage, blood losses occuring during surgical operations, resuscitation procedures after accidental blood loss, and the like. Further, as a plasma expander, a blood substitute serves as a therapeutic to treat volume deficiency shock, as an alleviant in anaphylactic and allergic shock, and for replacing plasma lost after burns and as a result of severe diarrhea.
Hemoglobin in solution has the capabiliy to transport oxygen and, theoretically, could be used as a substitute for red blood cells. Because hemoglobin solutions art oncotically active, these solutions also expand plasma volume, thereby providing a function as a plasma expander as well. Thus the ability to be oncotically active and transport oxygen suggests that hemoglobin solutions would be desirable for a resuscitation fluid where rapid initial treatment of hypovolemia and tissue hypoxia is required. However, in order to function as an adequate resuscitation fluid, hemoglobin solutions must be capable of maintaining tissue oxygenation for specified periods of time.
Hemoglobin present in the blood of mammals has a fundamental property in solution of reversible oxygenation. In its natural form, mammalian hemoglobin is a conjugated, non-crosslinked protein having a molecular weight of approximately 68,000 and structurally comprised of two pairs of sub-units. Each sub-unit contains a heme group and a polypeptide chain, called globin. In mammals, hemoglobin is present in erythrocytes, along with stroma which consists of proteins, phospholipids and cholesterol. See CLINICAL HEMATOLOGY, By Wintrobe, 6 Ed. Pages 138-199, (1967).
The reversible binding of oxygen requires the interaction between four chains of hemoglobin (tetrameric hemoglobin) which results from the ability of the protein to exist as two different quarternary structures (relaxed and tense) that have different oxygen affinities (Perutz, M. F.,
Prog. Clin. Biol. Res
. 1: 3 (1975)). The two different oxygen affinities permit hemoglobin to on-load oxygen when the oxygen tension is high (approximately 100 mm Hg Po
2
) and to off-load oxygen when the oxygen tension is low (approximately 40 mm Hg Po
2
) and give rise to a characteristic sigmoidal shape to the oxygen-hemoglobin dissociation curve. It is now known that the tense state of some hemoglobin in red cells is stabilized by the presence of organic phosphates such as 2,3-diphosphoglycerate (2,3-DPG), with the tense state of hemoglobin in solution not stabilized due to the absence of 2,3-DPG. Accordingly, hemoglobin in solution has a lower P
50
than hemoglobin in its natural form (Arnone, A.,
Nature
27: 146 (1972).
Aqueous hemoglobin exists in equilibrium between the tetrameric (MW 68,000) and dimeric (KW 34,000) forms (Bunn, H. F. et al.,
Trans. Assn. Am. Physicians
81: 187 (1968)). The dimers are excreted by the kidney and result in rapid intravascular elimination of hemoglobin solutions, with such solutions having a 2-4 hour plasma half-life. Accordingly, efforts have been directed to overcome the inherent limitations of hemoglobin solutions by molecular modification of the hemoglobin. The purpose of the molecular modification is to stabilize hemoglobin to prevent dimer formation and to maintain the tense conformational state. Bunn et al., supra, demonstrated that cross-linking hemoglobin reduced renal elimination and increased intravascular retention time. Bunn et al. utilized bis (N-maleimidomethyl) ether; however, the resulting hemoglobin, solution had a high oxygen affinity, i.e., a P
50
of 3 mm Hg. Pyridoxal-5-phosphate has been demonstrated to have an analogous effect to 2,3-DPG in lowering oxygen affinity, resulting in a P
50
of 26-30 mm Hg (Benesch, R. E.,
Biochem
. 11: 2568 (1972)). However, unlike 2,3-DPG, pyridoxal phosphate does not act as a cross-linking agent, resulting in intravascular retention times similar to that of unmodified hemoglobin (Greenburg, A. G. et al.,
Surgery
86: 13 (1979)). Thus it was thought that pyridoxylation and cross-linking would be required to produce a blood substitute having low oxygen affinities (P
50
equal to 20-30 mm Hg) and adequate intravascular retention times (half disappearance times of 20 or more hours).
In 1985, the Congress of the United States, Office of Technology Assessment (OTA), issued a report entitled “Blood Policy and Technology.” At chapter 6 of this report, alternative sources of blood products were discussed, with the conclusion that the impetus to develop alternative blood sources and substitutes based on economic, safety, and availability considerations was a necessity. According to the report, the ideal red blood cell substitute would have six properties: 1) an oxygen dissociation curve and oxygen-carrying capacity similar to that of intact red blood cells; 2) be non-toxic and non-antigenic; 3) have good flow characteristics; 4) remain in the circulation for a long period of time; 5) have a long shelf life; and 6) be cost effective in comparison to present red blood cell transfusions. The report also concluded that no substitute yet developed fulfills all these criteria.
Four basic approaches have been utilized to develop an adequate blood substitute. In one approach, a class of synthetic compounds called perfluoro chemicals are being developed. In a second approach, synthesized analogues of hemoglobin are being developed. Investigators are also attempting to assemble a red cell by encapsulating hemoglobin in lipid vesicles called liposomes. Finally, purified hemoglobin has been chemically modified to prolong its circulation and enhance its oxygen binding-dissociation properties.
According to the OTA report

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ultra pure hemoglobin solutions and blood-substitutes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ultra pure hemoglobin solutions and blood-substitutes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ultra pure hemoglobin solutions and blood-substitutes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3053925

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.