Ultra-low particle semiconductor cleaner

Cleaning and liquid contact with solids – Processes – Work handled in bulk or groups

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C134S002000, C134S003000, C134S021000, C134S026000, C134S028000, C134S031000, C134S034000, C134S902000

Reexamination Certificate

active

06491043

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to the filed of semiconductor integrated circuits. The invention illustrated in an example with regard to a semiconductor integrated circuit cleaning technique, including a method and apparatus, but it will be recognized that the invention has a wider range of applicability. Merely by way of example, the invention can also be applied to the manufacture of raw wafers, lead frames, medical devices, disks and heads, flat panel displays, microelectronic masks, and other applications requiring high purity wet processing such as steps of rinsing, cleaning, drying, and the like.
Industry utilizes or has proposed various techniques to rinse and dry a semiconductor wafer. An example of a conventional technique used to rinse a wafer is a cascade rinse. The cascade rinse utilizes a cascade rinser which includes inner and outer chambers, each separated by a partition. Rinse water flows from a water source into the inner chamber. An in-process wafer such as an etched wafer is typically rinsed in the cascade rinser by dipping the etched wafer into the rinse water of the inner chamber. This process if often used to neutralize and remove acid from the etched wafer.
A limitation with the cascade rinser is that “dirty water” often exists in the first chamber. The dirty water typically includes residual acid as well as “particles” which often often attach to the wafer. These particles often cause defects in the integrated circuit, thereby reducing the number of good dies on a typical wafer. Another limitation with the cascade rinser is wafers from the cascade rinser must still undergo a drying operation. A subsequent drying operation often introduces more particles onto the integrated circuit. More particles on the integrated circuit typically further decrease the number of good dies on the wafer. Accordingly, the cascade rinse often cannot clean or remove particles from the wafer.
Another technique often used to rinse wafers is the “quick dump” method. The quick dump method relies upon the rapid deployment of water from the rinse tank to remove water and impurities from the semiconductor wafer. A limitation with this method is its inability to actually clean or remove particles from the wafer. In fact, the rapid deployment of water from the tank often transfers more particles onto the wafer. In addition, the wafers from the quick dump tank must still undergo a drying operation, further increasing the number of particles on the wafer. As previously noted, more particles often relates to lower die yields on the semiconductor wafer.
A further technique used to both rinse and dry wafers relies upon a spin rinse/dryer. The spin rinse/dryer uses a combination of rinse water spray to rinse and centrifugal force to remove water from the semiconductor wafer. The dry step often removes the water from the semiconductor wafer substantially by centrifugal force and evaporation. However, the spin rinse/dryer often introduces more particles onto the wafer. In fact, initially dissolved or suspended contaminants such as particles in the water are often left on the semiconductor wafer, thereby reducing the number of good dies on the wafer. Another limitation with the spin rinse/dryer is its complex mechanical design with moving parts and the like. The complex mechanical design often leads to certain problems such as greater downtime, wafer breakage, more spare parts, greater costs, among others. A further limitation is static electricity often builds up on the wafers during the spin cycle, thereby attracting even more particles onto the surface of the semiconductor. Accordingly, the spin rinse/drying does not clean or remove particles from the wafer.
Other techniques used to dry wafers include an isopropyl alcohol (IPA) vapor dryer, full displacement IPA dryer, and others. These IPA-type dryers often rely upon a large quantity of a solvent such as isopropyl alcohol and other volatile organic liquids to facilitate drying of the semiconductor wafer. An example of such a technique is described in U.S. Pat. No. 4,911,761, and its related applications, in the name of McConnell et al. and assigned to CFM Technologies, Inc. McConnell et al. generally describes the use of a superheated or saturated drying vapor as a drying fluid. This superheated or saturated drying vapor often requires the use of large quantities of a hot volatile organic material. The superheated or saturated drying vapor forms a thick organic vapor layer overlying the rinse water to displace (e.g., plug flow) such rinse water with the drying vapor. The thick organic vapor layer forms an azeotropic mixture with water, which will condense on wafer surfaces, and will then evaporate to dry the wafer.
A limitation with this type of dryer is its use of the large solvent quantity, which is hot, highly flammable, and extremely hazardous to health and the environment. Another limitation with such a dryer is its cost, which is often quite expensive. In fact, this dryer needs a vaporizer and condenser to handle the large quantities of hot volatile organic material. Still further, it has been determined that large quantities of hot volatile organic material are typically incompatible with most photoresist patterned wafers, and are also detrimental to certain device structures.
Still another technique relies upon a hot deionized (DI) process water to rinse and promote drying of the semiconductor wafer. By way of the hot DI water, the liquid on the wafer evaporates faster and more efficiently than standard room temperature DI water. However, hot water often produces stains on the wafer, and also promotes build-up of bacterial and other particles. Hot water can also damage the semiconductor, thereby reducing the amount of good dies on the wafer. Another limitation is water is often expensive to heat, and hot DI water is also an aggressive solvent. As an aggressive solvent, it often deteriorates equipment and facilities, thereby increasing maintenance operation costs.
As line size becomes smaller and the complexity of semiconductor integrated circuits increases, it is clearly desirable to have a cleaning technique, including a method and apparatus, that actually removes particles, prevents additional particles, and does not introduce stains on the wafers. The cleaning technique should also dry the wafers, without other adverse results. A further desirable characteristic includes reducing or possibly eliminating the residual water left on wafer surfaces and edges when water is removed (a meniscus). The water left on such surfaces and edges often attracts and introduces more particles onto the semiconductor wafer. The aforementioned conventional techniques fail to provide such desired features, thereby reducing the die yield on the semiconductor during wet processes.
From the above, it is seen that a cleaning method and apparatus for semiconductor integrated circuits that is safe, easy, and reliable is often desired.
SUMMARY OF THE INVENTION
The present invention provides a safe, efficient, and economical method and apparatus to clean an article (or object) such as a semiconductor wafer. In particular, the present method provides an improved technique that actually removes or reduces the amount of particles from the semiconductor substrate and also effectively cleans the substrate. The present method also provides an in situ cleaning system with substantially no mechanical movement of the substrate.
One aspect of the present invention provides a method for cleaning a semiconductor wafer. The present method includes immersing a wafer in a liquid comprising water. The wafer has a front face, a back face, and an edge. The method also includes providing a substantially particle free environment (e.g., ultra-clean gas, ultra-clean non-reactive gas, etc.) adjacent to the front face and the back face as the liquid is being removed. A step of introducing a carrier gas comprising a cleaning enhancement substance (e.g., trace amount of polar organic compound, helium, surfactants, carbon dioxide, etc.) during the providi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ultra-low particle semiconductor cleaner does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ultra-low particle semiconductor cleaner, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ultra-low particle semiconductor cleaner will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2974219

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.