Ultra-low bandwidth intra-network routing method

Electrical computers and digital processing systems: multicomput – Computer-to-computer data routing – Decentralized controlling

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C709S229000, C370S355000

Reexamination Certificate

active

06701375

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates generally to networks of interconnected computers and, more particularly, to techniques for routing messages or data packets from one node to another in a “locally” located intranet. The nature of the invention first requires a few definitions by way of background. Relatively small networks, perhaps of up to a few hundred nodes and typically located in a single building or group of buildings, are referred to as local area networks (LANs). When the nodes are further apart, the terms “wide area network” or “metropolitan area network” are sometimes used, but the distinction is one of degree and the definitions sometimes overlap. LANs are typically interconnected through switching nodes called bridges and routers, to form a large “internet” of interconnected computer nodes.
The internet with which most computer users are familiar is referred to as the Internet. Interconnection of nodes on the Internet, and the transmission of data between them, is governed by a set of protocols defined by the Internet community and called the Internet protocol (IP) suite, or sometimes the TCP/IP suite. (TCP is “transmission control protocol.”)
The term “intranet” is used to refer to a localized portion of the Internet that is confined to a specific enterprise, such as a corporation or a governmental, educational or military organization. An intranet typically includes multiple interconnected LANs and may extend over a large geographical area. Use of the term intranet implies a commonality of interest among the users of the nodes in the intranet, and usually a commonality of ownership and control as well.
Multiple intranets are interconnected in the Internet by high-bandwidth “backbone” communication links, such as leased lines. Individual LANs in the Internet may also have relatively high bandwidth, which is a measure of their data carrying capacity. There are some situations, however, in which the bandwidth of an intranet is severely strained by the traffic of data packets and administrative messages being transmitted. This is especially true for intranets including increasingly popular wireless and mobile communications nodes. In wireless networks, the bandwidth is inherently limited in comparison to networks that use coaxial cables or optical fibers as a transmission medium.
In the Internet, messages and data are addressed to users by user name, i.e., a name that the user of a network node has selected or has been assigned, and a domain name, which is usually a name, nickname or abbreviation selected by an organization with which the user is affiliated in some way, as an employee or subscriber, for example. One of the main problems that must be solved in inter-networks is to determine the path that data packets should traverse to reach end destinations. This problem is usually addressed by devices known as routers, or by routing software in host platforms. Routers make decisions regarding packet forwarding based on numeric addresses, rather than symbolic names. The host computer that originates the packet (the “source” computer) has the responsibility of determining the numeric address (“IP address”) of the destination, generally by using services provided by special network nodes referred to as “name servers”. After determining the IP address of the destination, the source will send the message, in one or more data packets, to the local router for further processing.
There are a number of options that can be employed by such routers in order to make proper forwarding decisions, but they fall into two main categories: the routers can be pre-programmed with “static” routing information, or they can run a dynamic routing protocol. In the latter case, the routers constantly exchange administrative data packets throughout the network; these administrative data packets contain the information required for the routers to find paths to the destinations of interest. The first approach (“static routing”), has the advantage of not requiring continual usage of network bandwidth for the exchange of such administrative information, but has two main disadvantages: First, it complicates the network planning process, since all possible routing paths must be anticipated and included in the routing tables of each router in the network; Second, it does not allow adaptations to failed communication links, or to hosts that join the network at arbitrary locations after the planning process has been completed. This second shortcoming may be less important in an environment where hosts do not move and the communication media are extremely reliable, but is not suitable for a wireless network with mobile communication nodes.
The second approach (“dynamic routing”) overcomes the disadvantages of the static approach, but at the cost of the communications load burden on the communications network of the continuous exchange of administrative data packets containing routing information between each of the routers. In most applications of the Internet, the additional bandwidth overhead imposed by these messages does not degrade network performance significantly. Even in intranets in which bandwidth has become limited for one reason or another, the overhead is tolerated because it serves a necessary function, and because connection to the Internet requires adherence to TCP/IP standards.
An intranet with an inherently low bandwidth, however, such as an intranet that includes wireless LANs, is more significantly affected by the overhead of these administrative messages used for path finding and routing purposes. Therefore, there is a need for a method of message routing within an intranet that can operate without the bandwidth overhead usually associated with the Internet, but which still allows connection to the Internet in conformance with TCP/IP standards. The present invention satisfies this need.
SUMMARY OF THE INVENTION
The present invention resides in a method for establishing a communication path between two nodes of an intranet without using the conventional path finding and routing techniques associated with networks. Briefly, and in general terms, the method of the invention comprises the steps of: using an auxiliary communication channel to establish switched virtual circuit between a first router associated with a first host and a second router associated with a second host; transmitting data packets in both directions over the switched virtual circuit; and deactivating the switched virtual circuit when packet transmission activity has ceased for a selected time. Before establishing the switched virtual circuit, the method “finds” the second router associated with the second or “destination” host computer.
More specifically, the method may be defined as including the steps of: transmitting from a first host in an intranet, a first data packet addressed to a second host in the same intranet; receiving the first data packet at a first router near the first host; broadcasting from the first router, over an auxiliary communication channel, a request message identifying the second host; receiving the request message at a second router, which recognizes the second host identified in the request; transmitting over the auxiliary communication channel a response to the request message from the second router to the first router, providing a complete address for the second host; establishing in the first router, upon receiving the response to the request message, a switched virtual circuit between the first and second routers; transmitting the first data packet from the first router to the second router over the switched virtual circuit; and transmitting the first data packet from the second router to the second host, to complete delivery of the first data packet.
The method may further comprise the steps of: retrieving the address of the first host from the first data packet upon its arrival at the second router; and using the address of the first host in the second router, to establish a return path for data packets to be transmitted from the second host to the first host.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ultra-low bandwidth intra-network routing method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ultra-low bandwidth intra-network routing method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ultra-low bandwidth intra-network routing method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3280035

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.