Ultra fine dead sea mineral compound and method of manufacture

Solid material comminution or disintegration – Processes – With heating or cooling of material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C241S024120, C241S057000, C241S065000, C241S074000, C241S100000

Reexamination Certificate

active

06607151

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
Applicant's invention relates to an ultra fine mineral compound and a method of processing native Dead Sea minerals into this ultra fine mineral compound that can be used to manufacture all-natural Dead Sea mineral compositions particularly compositions for use in cosmetic preparations such as bath and body products.
2. Background Information
A cosmetic product is any substance or preparation intended for placing in contact with the various external parts of the human body or with the teeth or mucous membranes of the oral cavity with the intention of cleaning, perfuming, or protecting, to keep such parts in good condition, change their appearance or correct body odors. There are numerous product groups that fall within the category of cosmetic products or preparations, including but not limited to cosmetic emulsions, deodorants and antiperspirants, sunscreens, make-up preparations, hair preparations, bath products, soaps, exfoliating agents, and shaving preparations.
Cosmetic preparations are usually mixtures. A mixture is any matter consisting of two or more substances physically combined in some proportion by mass. In a mixture there is no chemical reaction. Two types of mixtures are heterogenous mixtures and homogenous mixtures. A heterogenous mixture is a mixture having ingredients of different states of matter. A suspension is a heterogenous mixture in which droplets or particles are suspended in a liquid. A colloidal dispersion is a specific type of suspension in which the particles or droplets of one substance are smaller than those in suspensions, but larger than those in solutions and that have one dimension in the range of 1 to 10 nm. A homogenous mixture is a mixture having ingredients of the same states of matter. Homogenous mixtures are usually solutions which are made up of a solute dissolved in a solvent. When the solute does not remain dissolved in the solvent the mixture is in turn referred to as a heterogenous mixture.
Many cosmetic preparations are suspensions and more particularly colloidal dispersions. In a colloidal dispersion there is a suspension of finely divided particles in a continuous medium in which the particles do not settle out of the substance rapidly and are not readily filtered. Where the particle is a liquid droplet and the medium is a liquid, the colloid is referred to as an emulsion. If however the particle is a solid and the medium is a liquid, the colloid is referred to as a sol or gel. A sol is a colloidal dispersion of a solid in a liquid in which the particles are so small that the dispersion appears transparent while a gel is a suspension that behaves as an elastic solid or semi-solid rather than liquid.
Colloidal systems undergo agglomeration, or gathering into a mass, leading to a distribution of droplet size for liquid colloids. Though wetting phenomena and nonwetting colloidal factors may play a role, the agglomeration process is induced by particulate collisions arising from diffusion, as in Brownian motion, velocity or shear gradients in a liquid dispersion medium, and gravitational settling.
Irreversible agglomeration can be quantified using various models for repulsive or attractive electrostatic, London-van der Waals, and steric forces which affect stabilization of aqueous and nonaqueous colloidal systems. A comprehensive model of colloidal stability, the DLVO (Derjagiun-Landau-Verwey-Overbeek) model has provided information regarding the roles of electrolytes, dielectric constant, and other physical quantities in colloidal systems. This theory considers the electrostatic interactions between two identically charged, suspended particles to be repulsive and to arise from the overlap of the electrical double layers associated with each particle.
For systems containing a soluble polymer or surfactant, molecular arrangement, thickness of the absorbed layer, temperature, and chain or segment salvation are additional critical parameters in determining the effectiveness of a dispersed agent in providing steric stabilization. If velocity or shear gradients are present, such as in mixing, and are sufficiently large, the frequency of collisions depends on the volume fraction of solids and the mean velocity gradient. Assuming that sedimentation is slow compared to the first two collision mechanisms, the overall agglomeration rate is
−dN/dt=k
d
N
2+
k
s
N
where N is the particle number concentration, k
d
and k
s
are the respective rate constants corresponding to diffusion controlled and shear induced collision processes, and the minus sign denotes that the particle number concentration decreases with time.
Cosmetic emulsions, such as lotions and creams, are emulsions of water-based and oil-based phases. An emulsion is more particularly a two phase system consisting of two incompletely miscible liquids, the internal or discontinuous phase dispersed as finite globules in the other termed the continuous phase. Emulsions can be classified according which liquid is dispersed in the continuous phase. Oil in water (o/w) emulsions have oil as the dispersed phase in water as the continuous phase. In water in oil (w/o) emulsions, the water is dispersed in the oil as the continuous phase.
Products that produce emulsions, or emulsifiers, can be classified as ionic or nonionic according to their behavior. An ionic emulsifier is composed of an organic lipophilic group and a hydrophilic group. The hydrophilic-lipophilic balance is often used to characterize emulsifiers and related surfactant materials. The ionic types may be further divided into anionic and cationic, depending on the nature of the ion-active group. The lipophilic portion of the molecule is usually considered to be the surface active portion. Nonionic emulsifiers are completely covalent and show no apparent tendency to ionize. Emulsifiers, being surface active agents, lower surface and interfacial tensions and increase the tendency of their solution to spread.
Mixing of cosmetic preparations is an important operation particularly in the preparation of heterogenous mixtures such as suspensions and colloids since the actual steps involved can dictate whether the particles or droplets remain suspended continuously throughout the medium for a reasonable period of time to maintain an adequate shelf life and viability of the preparation. This becomes increasingly difficult when the desire of the manufacturer is to produce cosmetic preparations that contain all natural ingredients. Natural ingredients refer to ingredients obtained from nature such as extracted directly from plants or animal products as opposed to being produced synthetically.
The present composition contains all natural ingredients. One of the natural ingredients incorporated into the composition of the present invention is Dead Sea minerals. Dead Sea minerals are not to be confused with sea salt or afro-salt® which has a different chemical composition. Sea salt is the compound remaining when oceanic sea water is evaporated. It contains primarily sodium and chloride and in some cases trace amounts of copper, manganese, nickel, fluorine, tin and iodine. The trace minerals can vary based upon the source of the sea water. Afrosalt® is a compound of inorganic salts derived from seawater containing 45%±31 sodium, 53%±3 chlorides, 3.6% magnesium, <7% sulphates, <3% calcium, <2% bromides, 0.49%±0.04 potassium, <0.3% iodides. The Dead Sea is a unique body of water, unlike any other and has a singular chemical composition. For years it has been known that treatments administered at the Dead Sea can bring about significant remissions in diseases such as psoriasis, psoriatic arthritis, rheumatoid arthritis, and osteoarthritis. It is not known what the mode of action is of the Dead Sea minerals. It is however believed that specific ions from the minerals play a role mainly as co-factors in enzymatic regulation activities in the metabolism of healthy skin. There are indications that magnesium is a co-factor for phosphate trans

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ultra fine dead sea mineral compound and method of manufacture does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ultra fine dead sea mineral compound and method of manufacture, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ultra fine dead sea mineral compound and method of manufacture will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3123144

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.