Ultra-fast probe

Electricity: measuring and testing – Fault detecting in electric circuits and of electric components – Of individual circuit component or element

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S762010, C250S21400C

Reexamination Certificate

active

06400165

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to an electrooptic probe for test and characterization of ultra-fast circuits, such as the picosecond fast circuits being used in optical communication systems and the method of using the probe.
BACKGROUND OF THE INVENTION
For the measurement of ultra-high frequency signals in electronic circuits, such as those used in optical communication systems, it is advantageous to have a freely positionable probe whose speed of response is even faster than that of the signals being measured. For this purpose, there have been developed probes that use photoconductive switches. Typical of probes of this kind is the photoconductive sampling probe described in a paper entitled “A Fiber-Mounted Micromachined Photoconductive Probe with 15 nV/Hz
½
Sensitivity”, App. Phys. Letter 69 Sep. 13, 1996.
This probe comprises as the switching region a film that has been grown on a standard monocrystalline gallium arsenide substrate by low temperature molecular beam epitaxy and that is generally described as LT GaAs. In an article in
Applied Physics Letters
, Vol. 59, Sep. 16, 1991, pp. 1491-1493, entitled “Low-Temperature Crown (GaAs Quantum Wells: Femtosecond Nonlinear Optical and Parallel-Feed Transport Studies,” LT GaAs material is shown to include semi-insulating electrical characteristics, subpicosecond photoconductive decay time and reasonably high mobility making possible the generation of subpicosecond electrical pulses. This high impedance probe has microvolt sensitivity with picosecond time. resolution and megohm impedance, thus enabling non-invasive tests of ultra-high speed circuits. However, these probes needed to be designed to be very thin to allow the short light pulses that are used to activate the probe to be transmitted sufficiently through the thickness of the absorptive standard GaAs substrate of the probe to make conducting the photoconductive LT GaAs switching film. Typically with such probes, the LT GaAs is grown on a substrate that was initially at least hundreds of microns thick. Subsequently the substrate typically has been thinned to no more than one or two microns and preferably is removed essentially entirely. As a result such probes tend to be difficult and expensive to make and also are quite fragile, limiting their use. Moreover, generally the circuitry of the device under test is at its top surface making it impractical to transmit the activation light pulses through the device under test to the probe.
The desirable properties of LT GaAs mentioned above, particularly the short photoconductive decay time and high mobility, are primarily the result of the presence in such material of excess arsenic that provides dangling bonds or defect sites that capture quickly the free carriers generated by the excitation light. The excess arsenic occurs because LT GaAs generally is grown at temperatures in the range of about 190° C. and 300° C. in contrast to the range of between about 600° C. and 700° C. normally used for growing standard GaAs and in an atmosphere of excess arsenic.
SUMMARY OF THE INVENTION
The present invention provides an optoelectronic probe that includes on one surface a photoconductive switch, advantageously a relatively thin film of LT GaAs, that is optimized for two-photon operation. As such, it can be activated by an activation light beam of multiple excitation photon energy that irradiates the opposite surface of the probe. Such a beam can pass through with little absorption a relatively thick substrate, advantageously at least several hundred microns thick, supporting the switching layer so long as the excitation photon energy of the beam is below the bandgap of the substrate material of the probe. Advantageously, for two-photon excitation the light can be provided by a mode-locked femtosecond pulsed laser of 1.55 microns wavelength of the kind known in the art. As a consequence, there is no need to thin the substrate, since thicknesses of several hundred microns are now tolerable. Moreover, if there is chosen an activation light of appropriate excitation photon energy, alternatively the light beam can be applied to pass first through the device under test to activate the switching film of the probe.
In addition to the use of a film of LT GaAs, a GaAs film having dangling bonds and/or captive sites sufficient to provide the desired short photoconductive decay time and high mobility can be provided in other ways. These include Erbium doping, and ion or proton bombardment.
The invention will be better understood from the following more detailed description taken in conjunction with the accompanying drawing.


REFERENCES:
patent: 4851767 (1989-07-01), Halbout
patent: 4928058 (1990-05-01), Williamson
patent: 4978910 (1990-12-01), Knox
patent: 5442300 (1995-08-01), Horel
patent: 5844288 (1998-12-01), Mourou
patent: 6160252 (2000-12-01), Mourou

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ultra-fast probe does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ultra-fast probe, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ultra-fast probe will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2893942

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.