Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Ester doai
Reexamination Certificate
1999-08-10
2001-05-01
Rotman, Alan L. (Department: 1612)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Ester doai
C514S525000, C514S445000, C514S473000, C558S390000, C549S065000, C549S475000, C549S479000
Reexamination Certificate
active
06225346
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to the field of tyrosine kinase inhibition. More specifically, the present invention relates to the use of small organic molecules to prevent and treat cell proliferative disorders or cell differentiation disorders associated with particular tyrosine kinases by inhibiting one or more abnormal tyrosine kinase activities.
BACKGROUND OF THE INVENTION
Cellular signal transduction is a fundamental mechanism whereby external stimuli that regulate diverse cellular processes are relayed to the interior of cells. Reviews describing intracellular signal transduction include Aaronson,
Science,
254: 1146-1153, 1991; Schlessinger,
Trends Biochem. Sci.,
13:443-447, 1988; and Ullrich and Schlessinger,
Cell,
61:203-212, 1990. One of the key biochemical mechanisms of signal transduction involves the reversible phosphorylation of tyrosine residues on proteins. The phosphorylation state of a protein is modified through the reciprocal actions of tyrosine kinases (TKs) and tyrosine phosphatases (Tps).
Tyrosine kinases can be of the receptor type (having extracellular, transmembrane and intracellular domains) or the non-receptor type (being wholly intracellular). There are 19 known families of receptor tyrosine kinases including the Her family (EGFR, Her 2, Her 3, Her 4), the insulin receptor family (insulin receptor, IGF-1R, insulin-related receptor), the PDGF receptor family (PDGF-R&agr; and &bgr;, CSF-1R, kit, Flk2), the Flk family (Flk-1, Flt-1, Flk-4), the FGF-receptor family (FGF-Rs 1 through 4), the Met family (Met, Ron), etc. There are 11 known famiolies of non-receptor type tyrosine kinases including the Src family (src, yes, fyn, lyn, lck. blk, Hck, Fgr, yrk), Abl family (Abl, Arg), Zap 70 family (Zap 70, Syk) and Jak family (Jak 1, Jak 2, Tyk 2, Jak 3). Many of these tyrosine kinases have been found to be involved in cellular signalling pathways leading to pathogenic conditions such as cancer, psoriasis, hyperimmune response, etc.
Protein tyrosine kinases play an important role in cellular signaling pathways that regulate the control of cell growth and differentiation (for review, see Schlessinger & Ullrich, 1992,
Neuron,
9:383-391) . Aberrant expression or mutations in receptor tyrosine kinases (RTKs) have been shown to lead to either uncontrolled cell proliferation (e.g. malignant tumor growth) or to defects in key developmental processes. In some instances, a single tyrosine kinase can inhibit, or stimulate, cell proliferation depending on the cellular environment in which it is expressed. Consequently, the biomedical community has expended significant resources to discover the specific biological role of members of the RTK family, their function in differentiation processes, their involvement in tumorigenesis and in other diseases, the biochemical mechanisms underlying their signal transduction pathways activated upon ligand stimulation and the development of novel antineoplastic drugs.
Attempts have been made to identify RTK “inhibitors” using a variety of approaches, including the use of mutant ligands (U.S. application Ser. No. 4,966,849), soluble receptors and antibodies (Application No. WO 94/10202; Kendall & Thomas, 1994,
Proc. Nat'l Acad. Sci
90:10705-09; Kim, et al., 1993,
Nature
362:841-844), RNA ligands (Jellinek, et al., 19
Biochemistry
33:10450-56), protein kinase C inhibitors (Schuchter, et al., 1991,
Cancer Res.
51:682-687); Takano, et al., 1993,
Mol. Bio. Cell
4:358A, Kinsella, 20 et al., 1992,
Exp. Cell Res.
199:56-62; Wright, et al., 1992,
J. Cellular Phys.
152:448-57) and tyrosine kinase inhibitors (WO 94/03427; WO 92/21660; WO 91/15495; WO 94/14808; U.S. Pat. No. 5,330,992; Mariani, et al., 1994,
Proc. Am. Assoc. Cancer Res.
25 35:2268).
Attempts have also been made to identify small molecules which act as tyrosine kinase inhibitors. For example, bis monocyclic, bicyclic or heterocyclic aryl compounds (PCT WO 92/20642), vinylene-azaindole derivatives (PCT WO 94/14808) and 1-cycloproppyl-4-pyridyl-quinolones (U.S. Pat. No. 5,330,992) have been described generally as tyrosine kinase inhibitors. Styryl compounds (U.S. Pat. No. 5,217,999), styryl-substituted pyridyl compounds (U.S. Pat. No. 5,302,606), certain quinazoline derivatives (EP Application No. 0 566 266 Al), seleoindoles and selenides (PCT WO 94/03427), tricyclic polyhydroxylic compounds (PCT WO 92/21660) and benzylphosphonic acid compounds (PCT WO 91/15495) have been described as compounds for use as tyrosine kinase inhibitors for use in the treatment of cancer.
SUMMARY OF THE INVENTION
The present invention relates to molecules capable of modulating tyrosine signal transduction to prevent and treat cell proliferative disorders or cell differentiation disorders associated with particular tyrosine kinases by inhibiting one or more abnormal tyrosine kinase activities.
More specifically, the invention is generally directed to compounds having the formulae:
and pharmaceutically acceptable salts thereof, wherein:
X is NH or CH
2
CN,
m is 0 or 1;
n is, 0, 1, 2, or 3;
Q is an aryl or heteroaryl 5 or 6 member ring optionally substituted with R;
R
1-4
are independently selected from the group consisting of halo, trihalo, methyl, alkyl, alkoxy, hydroxy, H, nitro, cyano, amide, sulfonyl, sulfonamide, carboxy, carboxamide, and amino.
Q is preferably phenyl, thienyl, or
optionally substituted with F or CF
3
Examples of preferred compounds include compounds 731-744 shown below:
Another preferred compound is 748 shown below:
The present invention also provides pharmaceutical compositions and methods for inhibiting cell proliferation or differentiation and related disorders. Examples of such disorders include cancers, blood vessel proliferative disorders, psoriasis, hyperimmune response and fibrotic disorders. Examples of other disorders include the HER2 disorders, EGF disorders, IGFR disorders, PDGFR disorders, met disorders, SVC disorders, and KDR/FLK-1 disorders described herein. It is to be understood that compounds which are effective for diseases related to one RTK will also likely be effective for diseases related to other RTK's, especially those from the same family. Thus, for example, compounds shown to have good effect against Her2 are likely to also have good effect against other members of the Her family, i.e., EGFR, Her3, and Her4.
Chemical Definitions
The following is a list of some of the definitions used in the present disclosure. An “alkyl” group refers to a saturated aliphatic hydrocarbon, including straight-chain, branched-chain, and cyclic alkyl groups. Preferably, the alkyl group has 1 to 12 carbons. More preferably, it is a lower alkyl of from 1 to 7 carbons, more preferably 1 to 4 carbons. The alkyl group may be substituted or unsubstituted. When substituted the substituted group(s) is preferably, hydroxyl, cyano, alkoxy, ═O, ═S, NO
2
, N(CH
3
)
2
, amino, or SH.
An “alkenyl” group refers to an unsaturated hydrocarbon group containing at least one carbon-carbon double bond, including straight-chain, branched-chain, and cyclic groups. Preferably, the alkenyl group has 2 to 12 carbons. More preferably it is a lower alkenyl of from 2 to 7 carbons, more preferably 2 to 4 carbons. The alkenyl group may be substituted or unsubstituted. When substituted the substituted group(s) is preferably, hydroxyl, cyano, alkoxy, ═O, ═S, NO
2
, halogen, N(CH
3
)
2
, amino, or SH. An “alkynyl” group refers to an unsaturated hydrocarbon group containing at least one carbon-carbon triple bond, including straight-chain, branched-chain, and cyclic groups. Preferably, the alkynyl group has 2 to 12 carbons. More preferably, it is a lower alkynyl of from 2 to 7 carbons, more preferably 2 to 4 carbons. The alkynyl group may be substituted or unsubstituted. When substituted, the substituted group(s) is preferably, hydroxyl, cyano, alkoxy, ═O, ═S, NO
2
, N(CH
3
)
2
, amino or SH.
An “alkoxy” group refers to an “—O-alkyl” group, where “alkyl” is defined as described above.
An “aryl” group refers to an
McMahon Gerald
Nematalla Asaad S.
Sun Li
Tang Peng Cho
Foley & Lardner
Rotman Alan L.
Sugen Inc.
LandOfFree
Tyrphostin like compounds does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Tyrphostin like compounds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tyrphostin like compounds will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2500776