Active solid-state devices (e.g. – transistors – solid-state diode – Thin active physical layer which is – Heterojunction
Reexamination Certificate
2007-08-14
2007-08-14
Dickey, Thomas L. (Department: 2826)
Active solid-state devices (e.g., transistors, solid-state diode
Thin active physical layer which is
Heterojunction
Reexamination Certificate
active
10772573
ABSTRACT:
Semiconductor optoelectronic devices such as diode lasers are formed on InP substrates with an active region with an InAsN or InGaAsN electron quantum well layer and a GaAsSb or InGaAsSb hole quantum well layer which form a type II quantum well. The active region may be incorporated in various devices to provide light emission at relatively long wavelengths, including light emitting diodes, amplifiers, surface emitting lasers and edge-emitting lasers.
REFERENCES:
patent: 5383211 (1995-01-01), Van de Walle et al.
patent: 5689123 (1997-11-01), Major et al.
patent: 5793787 (1998-08-01), Meyer et al.
patent: 6621842 (2003-09-01), Dapkus
patent: 6791104 (2004-09-01), Tansu et al.
patent: 2004/0061102 (2004-04-01), Tansu
patent: WO 01/29943 (2001-04-01), None
Peter et al. “Light-emitting diodes and laser diodes based on a Ga1-xInxAs/GaAs1-ySby” Applied Physics Letters, Apr. 5, 1999, vol. 74 Issue 14, pp. 1951-1953.
J S Harris Jr, “GaInNAs long-wavelength lasers: progress and challenges,” Semicond. Sci. Technol. 17 (2002) pp. 1-12.
Shan et al., “Band Anticrossing in GaInNAs Alloys,” Phys. Rev. Lett. vol. 82, No. 6, pp. 1221-1224 (1999).
Press Release, “Striking Effects Of Nitrogen In Semiconductor Alloy Explained,” Lawrence Berkeley National Laboratory, Jun. 9, 1999 (http://www.sciencedaily.com/releases/1999/06/990609072619.htm).
H. C. Casey, Jr., “Temperature dependence of threshold current density on InP-Ga0.28In0.72As0.6P0.4(1.3 μm) double heterostructure lasers,” J. App. Phys., vol. 56 (7), 1984, pp. 1959-1964.
J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. Ram-Mohan, “Type II-quantum well lasers for the mid-wavelength infrared,” Appl. Phys. Lett., 67 (6), 1995, pp. 757-759.
M. Kondow, T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M. Okai, and K. Uomi, “GaInNAs : A novel material for long wavelength semiconductor lasers,” IEEE J. Select. Topic Quantum Electronic., vol. 3, 1997, pp. 719-730.
A. F. Phillips, A. F. Sweeney, A. R. Adams, and P. J. A. Thijs, “Temperature Dependence of 1.3- and 1.5-μm Compressively Strained InGaAs(P) MQW Semiconductor Lasers,” IEEE. J. Select. Topics Quantum Electron., vol. 5, No. 3, May/Jun. 1999, pp. 401-412.
S. Sato and S. Satoh, “1.21 μm Continuous-Wave Operation of Highly Strained GaInAs Quantum Well Lasers on GaAs Substrates,” Jpn. J. Appl. Phys., vol. 38, 1999, pp. L990-L992.
F. Koyama, D. Schlenker, T. Miyamoto, Z. Chen, A. Matsutani, T. Sakaguchi, and K. Iga, “1.2 μm highly strained GaInAs/GaAs quantum well lasers for singlemode fibre datalink,” Electron. Lett., 35(13), 1999, pp. 1079-1081.
D. Schlenker, T. Miyamoto, Z. Chen, F. Koyama, and K. Iga, “1.17-μm highly strained GaInAs-GaAs quantum-well laser,” IEEE Photon. Technol. Lett., vol. 11(8), Aug. 1999, pp. 946-948.
J.S. Harris, Jr., “Tunable Long-Wavelength Vertical-Cavity Lasers: The Engine of Next Generation Optical Networks?” IEEE J. Select. Topics Quantum Electron., vol. 6, No. 6, Nov./Dec. 2000, pp. 1145-1160.
M. O. Fischer, M. Reindhardt, A. Forchel, “Room-temperature operation of GaInAsN-GaAs laser diodes in the 1.5-μm range,” IEEE J. Select. Topic Quantum Electronic., vol. 7 (2), Mar.-Apr. 2001, pp. 149-151.
M. Kawaguchi, T. Miyamoto, E. Gouardes, D. Schlenker, T. Kondo, F. Koyama, and K. Iga, “Lasing characteristics of low threshold GaInNAs lasers grown by Metalorganic Chemical vapor Deposition”, Jpn. J. Appl. Phys., vol. 40, Jul. 2001, pp. L744-L746.
N. Tansu and L. J. Mawst, “Low-Threshold Strain-Compensated InGaAs(N) (λ=1.19−1.31 μm) Quantum Well Lasers,” IEEE Photon. Technol. Lett., vol. 14(4), Apr. 2002, pp. 444-446.
J.I. Malin, et al., “Type II Mid-Infrared Quantum Well Lasers,” App. Phys. Lett., vol. 68, No. 21, May 20, 1996, pp. 2976-2978.
J.R. Meyer, et al., “Auger Coefficients in Type-II InAs/Ga1−xInxSb Quantum Wells,” Applied Physics Letters, vol. 73, No. 20, Nov. 16, 1998, pp. 2857-2859.
P. Dowd, et al., “Long Wavelength (1.3 and 1.5 μm) Photoluminescense fromInGaAs/GaPAsSb Quantum Wells Grown on GaAs,” Applied Physics Letters, vol. 75, No. 9, Aug. 30, 1999, pp. 1267-1269.
Nelson Tansu, et al., “High-Performance Strain-Compensated InGaAs-GaAsP-GaAs (λ=1.17 μm) Quantum-Well Diode Lasers,” IEEE Photonics Technology Letters, vol. 13, No. 3, Mar. 2001, pp. 179-181.
Nelson Tansu, et al., “Temperature Analysis and Characteristics of Highly Strained InGaAs-GaAsP-GaAs (λ>1.17 μm) Quantum-Well Lasers,” IEEE Transactions on Quamtum Electronics, vol. 38, No. 6, Jun. 2002, pp. 640-651.
Nelson Tansu and Luke Mawst, “Design Analysis of 1550-nm GaAsSb-(In) GaAsN Type-II Quantum-Well Laser Active Regions,” IEEE J. of Quantum Elec., vol. 39, No. 10, Oct. 2003, pp. 1205-1210.
I. Vurgaftman and J.R. Meyer, “(In) GaAsN-based type-II ‘W’ quantum-well lasers for emission at λ=1.55μm,” Appl. Phys. Lett., vol. 83, No. 14, Oct. 6, 2003, pp. 2742-2744.
Mawst Luke J.
Meyer Jerry R.
Tansu Nelson
Vurgaftman Igor
Dickey Thomas L.
Wisconsin Alumni Research Foundation
LandOfFree
Type II quantum well mid-infrared optoelectronic devices does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Type II quantum well mid-infrared optoelectronic devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Type II quantum well mid-infrared optoelectronic devices will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3827534