Telephonic communications – Plural exchange network or interconnection – Interexchange signalling
Reexamination Certificate
1998-05-14
2001-05-29
Matar, Ahmad (Department: 2642)
Telephonic communications
Plural exchange network or interconnection
Interexchange signalling
C379S219000, C379S220010, C379S229000, C379S207030
Reexamination Certificate
active
06240174
ABSTRACT:
CROSS-REFERENCE TO RELATED APPLICATIONS
Not applicable
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention disclosed broadly relates to the field of telephony services using an Intelligent Peripheral (IP) in an Advanced Intelligent Network (AIN), and more particularly relates to the two-way transmission of subscriber data between a database directly coupled to an IP and data stored in a service provider's system.
2. Description of the Related Art
In recent times, the number of new services and features offered over enhanced telephone networks has grown. The AIN allows telephone companies to decentralize intelligence away from monolithic switches onto nodes throughout the network. This decentralization increases flexibility, enabling new automation, and making new services possible. These enhanced telephone networks are known as “Advanced Intelligent Networks” (AINs). Telephony control networks conforming to AIN architecture contain intelligent subsystems for controlling switched traffic and subscriber services such as call waiting, call forwarding, voice announcements, voice response, keyboard response, and more. These intelligent subsystems, called “Intelligent Peripherals” (IP), are configured for specific regional calling services.
Along with the quantity of different telephony services being offered, the complexities of many of the newer services have also increased. The increase in provider service offerings is typically accompanied by the need for more subscriber specific data. For example, a provider service such as “find me” where the telephony service will automatically dial a predefined list of telephone numbers in a specified sequence to reach a party. Suppose a subscriber signs up for the service of “find me.” An operator for the provider of the “find me” service would take the ordered list of telephone numbers from the subscriber orally over the telephone. The subscriber may give an order list that includes: (1) a work phone number, (2) a car phone number, (3) a cellular phone number, (4) a pager number and (4) a home phone number. The operator for the provider takes this subscriber information over the phone and enters it into the provider's order entry system. Anytime in the future the subscriber wishes to modify his/her specific ordered “find me” list, the subscriber calls the operator for the service provider and orally updates the list with the operator over the telephone. In some service providers systems, the use of IVR (Interactive Voice Response) technique enables the subscriber to modify his/her subscriber specific data. Continuing with the “find me” service, the subscriber can make simple deletions and other modifications to the list using an IVR system that presents audio menus and responds to subscriber selections made via a touch-tone telephone. However, for more complicate changes such as reordering the telephone numbers on the “find me” list, this use of IVR systems can be tedious and difficult. Therefore, a need exists for service providers in an AIN system to provide subscriber with an ability to update subscriber specific data without depending on IVR techniques or the use of operator assistance.
Another problem for providers of telephony services that depend on subscribers specific data is inefficient use of AIN resources, especially the use of network resources. Often the service provider's subsystems in an IP system communicate with other devices, such as SCP (service control points) which is external to the IP system. These communications tie up network and communication resources. The decrease availability of resources makes the overall AIN system respond. It is typical for service providers using IVR techniques to update subscribers specific data in small pieces of data at a time. The frequent occurrences of these small updates result in an increase of traffic on the AIN network. Accordingly, a need exists for AIN service providers to allow the update of the subscriber specific data while keeping the impact to network resources to a minimum.
Still another problem for providers of telephony services that depend on subscribers specific data is the ability to update subscriber data online at the IP. Today, service providers manage subscriber data in a central machine that sends subscriber updates to proprietary databases coupled to Service Control Points (SCPs). Updates made to the central machine are sent to the proprietary database. This is a unidirectional flow from the central machine to the proprietary databases. Updates made directly to the proprietary databases are not sent to the central office machine. Moreover, updates by a subscriber for many services are simply not possible in many proprietary databases. Therefore, a need exists for AIN service providers to provide bidirectional updates between central office machines and subscriber databases coupled to an IP.
SUMMARY OF THE INVENTION
Briefly, in accordance with the present invention, an Automated Intelligent Network (AIN) telephone system comprising at least one central office switching system, an intelligent peripheral subsystems for coupling with a central office switching system, a service provider subsystem for providing customizable subscriber services based upon subscriber-specific data; wherein the subscriber-specific data is selectively updated by a service provider, a method of updating subscriber-specific data comprising the steps of: directly accessing a database for storing subscriber-subscriber-specific data coupled to the intelligent peripheral; selectively updating subscriber-specific data on the database using an IVR (Interactive Voice Response) system coupled to the intelligent peripheral subsystem; selectively updating the subscriber-specific data on the database using a data entry device coupled to the intelligent peripheral subsystem; and transferring at least part of the subscriber-specific data from the intelligent peripheral subsystem so as to correspondingly update the subscriber-specific data in the service provider subsystem.
REFERENCES:
patent: 6014437 (2000-05-01), Acker et al.
patent: 6016334 (2000-01-01), Kasrai
patent: 6061685 (2000-05-01), Fantenberg
Deane, Jr. William J.
Fleit Kain Gibbons Gutman & Bongini P.L.
Gibbons Jon A.
International Business Machines - Corporation
Matar Ahmad
LandOfFree
Two way transmission of subscriber provisional data for an... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Two way transmission of subscriber provisional data for an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Two way transmission of subscriber provisional data for an... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2499629