Two-way clutch biasing assembly

192 clutches and power-stop control – Clutch and gear

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C192S035000, C192S038000, C180S249000

Reexamination Certificate

active

06588559

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to a biasing device used with a two-way clutch assembly and, more specifically, to an apparatus for providing a biasing assembly for use with a two-way clutch assembly within a vehicle transfer case, which decreases the mechanical backlash that occurs during a counter-rotational engagement within the two-way clutch assembly.
DESCRIPTION OF THE RELATED ART
Transfer cases are used in full and part-time, four-wheel drive vehicles to distribute driving power received through an input shaft from the vehicle's transmission to a pair of output drive shafts. One of the drive shafts powers the vehicle's front wheels and the other of the drive shafts powers the vehicle's rear wheels. In vehicles that permit shifting between two-wheel drive (hereafter 2WD) and four-wheel drive (hereafter 4WD) modes, the input shaft of the transfer case provides continuous drive power to one of its output shafts and selectively provides drive power to the other output shaft via some type of disengageable or otherwise adjustable coupling, such as a viscous coupling, electromagnetic clutch, or positionable spur gearing. Other drive modes are sometimes provided, including 4WD high (4H) for higher 4WD speeds, 4WD low (4L) for lower 4WD speeds, neutral for disengaging the transmission from the front and rear axles to allow towing, and locked 4WD for controlling wheel slippage.
Additionally, other transfer case applications have evolved, such as “on-demand 4WD”, in which a transfer case, with its related parts that provide 4WD, is installed in the vehicle, yet 4WD mode is only engaged, by automatic means, when there is a loss of 2WD traction. Full-time, or constant, 4WD mode, sometimes referred to as “all-wheel drive” is also currently available in some automotive variants. In this mode, 4WD is not deselectable and remains a fixed configuration.
In the transfer cases used for these vehicles, certain elements, or components, are required to transmit the driving force. More particularly, certain elements are required to selectively transmit the driving force during particular driving situations and not in others. One example of a device used to selectively transmit driving, or rotational force, in a transfer case is a one-way clutch. One-way clutches are known devices having inner and outer races with an engagement mechanism interposed therebetween. Generally speaking, the engagement mechanism is designed to lock the races together when the relative rotation of the races is in one particular rotational direction. When the races rotate in the opposite relative direction, the engagement mechanism is unlocked and the races have free rotation relative to each other. In application, when the races are fixed to concentric shafts, the one-way clutch will function to hold the shafts together when engaged, causing them to rotate in the same direction and thereby transferring motive force, or drive torque, from one shaft to the other. When the one-way clutch is disengaged, the shafts thereby freewheel relative to each other.
Specific applications govern how the one-way clutch engagement is designed. A one-way clutch may be designed to have one race as the driving member and one as the driven member, or the clutch may be designed to allow either shaft to act as the driving member during different operating modes. In this manner, the locking mechanism of the one-way clutch may be designed to engage in response to the rotation of only one of the races or the clutch may be designed as to engage if either race provides the proper relative rotation.
The one-way clutch is typically used in circumstances in which shaft to shaft, or shaft to race, rotational, torque-transferring engagements are desirable but a “hard’ connection, such as a spline or keyed connection, would not work. For example, during certain operating parameters, a 4WD vehicle experiences driveline difficulties that arise from having the front and rear wheels cooperatively driven, which can be alleviated by the use of these one-way clutch devices within the transfer case. When a 4WD vehicle turns a tight corner with the four wheels coupled together on a paved road, the vehicle may experience what is known as “tight corner braking effect”. This happens due to the inherent physical geometry that affects objects rotating at different radial distances from a center point. Two distinct effects generally occur with 4WD vehicles. First, when any vehicle enters a curve, the wheels on the outside of the curve must traverse a greater circumferential distance than the wheels on the inside of the curve due to the greater radial distance from the center of the curve. The tighter the curve, the greater the difference in the rate of rotational, angular speed between the inner wheels and the outer wheels. Therefore, in a curve the outside wheels must rotate faster than the inner wheels. This is effect is exaggerated in a 4WD vehicle but is generally countered by the vehicle's differential assemblies installed at the front and rear axles. Secondly, since the front wheels are also leading the vehicle through the curve, they must rotate faster than the rear wheels. With a solid 4WD engagement there is no device (such as a differential) to counter this action and the slower moving rear wheels act in an undesirable braking manner.
To solve this problem, one-way clutches have been employed in the transfer case so that as the vehicle beings turning a corner, the front wheels (connected to the transfer case output shaft through a one-way clutch) are allowed to disengage and freewheel faster than the rear wheels. Specifically, the driven shaft of the one-way clutch (i.e., the output shaft to the 4WD front wheels) begins turning faster than the input, or driving, shaft and the one-way clutch's locking mechanism disengages allowing freewheeling of the output shaft relative to the input shaft. This momentarily takes the transfer case out of 4WD and prevents the tight corner braking effect.
Another undesirable 4WD driving effect happens during engine braking. This occurs in a manual transmission 4WD vehicle when in 4WD and coasting. The manual transmission maintains the physical connection to the vehicle's engine, such that when the vehicle is allowed to coast, the engine places a decelerating, or braking, force on the transfer case, both the input shaft and output shafts, and ultimately on both the front and rear wheels. The normal, and undesirable, parasitic effect of engine braking though the rear wheels of a manual transmission 2WD vehicle has a negative impact on fuel consumption and efficiency, which is greatly increased in the case of the 4WD vehicle by adding in the front wheels as well. In this instance, when a one-way clutch is used in the driveline of the transfer case, the slowing of the input shaft through the engine braking effect allows the output shaft (which is connected to the front wheels) to disengage and freewheel, momentarily taking the transfer case out of 4WD and preventing the engine braking effect from passing to the front wheels, thereby reducing the negative impact on fuel efficiency.
Finally, in an on-demand application, a one-way clutch can be employed in the transfer case so that in the normal 2WD mode, if one of the rear wheels should slip during vehicle acceleration, the rotating speed of the input shaft will increase, so that the one-way clutch engaging elements will bring the transfer case into 4WD and the front wheels into a driven mode.
While proving to be of great value, as transfer case design technology utilizing one-way clutches continued to evolve, the one-way clutch designs began to reveal certain limitations. Most importantly, while a one-way clutch would solve the above-mentioned problems and disadvantages, the one-way clutch would only work, by itself, in one direction. In other words, the one-way rotational engagement between the input and output shafts in the transfer case would allow forward 4WD movement but not reverse 4WD movement. To provide this fu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Two-way clutch biasing assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Two-way clutch biasing assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Two-way clutch biasing assembly will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3028329

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.