Two-stroke cycle engine

Internal-combustion engines – Two-cycle – Rear compression

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C123S0650PD, C123S654000

Reexamination Certificate

active

06408805

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention concerns a two-stroke cycle engine which uses a layer of scavenging air pressurizing the crankcase. More specifically, it concerns a small two-stroke cycle engine using a preceding air-layer for scavenging, which drives a layer of scavenging air in advance of the fuel-air mixture.
2. Description of the Related Art
Two-stroke cycle engines belonging to the prior art take advantage of the fact that a negative pressure is created in the crankcase when the piston reaches the top of its stroke. This negative pressure causes the fuel-air mixture to be sucked into the crankcase. When the piston reaches the bottom of its stroke, the pressurized fuel-air mixture in the crankcase reaches the scavenging port and is conducted from the crankcase into the combustion chamber. The fuel-air mixture fills the combustion chamber, pushing the exhaust gases ahead of it. In this scavenging process, the opening duration of the scavenging port and the exhaust port experiences significant overlap, with the result that approximately 30% of the fuel-air mixture is sucked out with the exhaust gases. This is the primary cause of the large component of THC (total hydrocarbons) in the exhaust, and it results in the wastage of fuel.
To reduce the quantity of fuel-air mixture which is pushed out of the combustion chamber, scavenging air designs which drive a layer of air ahead of the fuel-air mixture have been proposed. In engines which use scavenging air, the fuel-air mixture goes into the crankcase as the piston travels upward in the intake process. At the same time, air is sucked into the crankcase through a scavenger passage connected to the scavenging port so that the passage is filled with air. In the combustion and exhaust processes which occur when the piston drops and the scavenging port is open, the air in the scavenger passage is forced into the combustion chamber ahead of the fuel-air mixture to scavenge the exhaust gases from the combustion. Immediately after the scavenging air, the fuel-air mixture is admitted into the combustion chamber. This scavenging-air method reduces the quantity of fuel-air mixture which is pushed out of the combustion chamber to one third that which occurred with prior art engines.
A design for a scavenging-air two-stroke cycle engine which forces a layer of air ahead of the fuel-air mixture, in which the fuel and air valves on the carburetor are realized as a single valve, is disclosed in the Japanese Patent Publication (Kokai) 10-252565.
In the prior art scavenging-air engine which drives a layer of air ahead of the fuel-air mixture, the preceding layer of air admitted to the cylinder and crankcase through the air control valve was routed through the same number of passages (either two or three) as there were scavenging ports downstream from the air control valve. These were connected to the passages for the scavenging ports of the cylinders by rubber tubes. The air was fed through lead valves on the scavenger passages to passages on the cylinder and crankcase.
The air introduced via the air control valve was sucked into the crankcase temporarily when the cylinder of the piston was pressurized. When the piston dropped and scavenging occurred, the scavenging air was led into the combustion chamber from the scavenging port.
In another prior art design proposed in the Japanese Patent Publication (Kokai) 7-139358, an air passage was provided which fed into the scavenger passage at a location adjacent to the scavenging port. A non-return valve was provided on the air passage, as was a control valve. The control valve was interlinked with the operation of the engine throttle. In this engine, the crankcase experienced negative pressure when the piston was up. At the same time that the fuel-air mixture was sucked into the crankcase through its supply port, the non-return valve was opened and the air was sucked in through the air passage. This air would completely or partially fill the scavenger passage. When the piston fell during the ignition and exhaust processes and the scavenging port was opened, first the air would rush into the combustion chamber and then the fuel-air mixture would be supplied.
With this prior art technique, a means was devised which would supply the air from the scavenging port to scavenge the combustion chamber quickly at the start of the scavenging process so as to minimize the quantity of fuel-air mixture lost through the exhaust port. This device admitted the fuel-air mixture from the crankcase into the combustion chamber via the scavenging port with a slight delay after the scavenging air was admitted.
This sort of two-stroke cycle engine which admitted a layer of air in front of the fuel-air mixture reduced the quantity of mixture exhausted with the combustion gases, prevented an excessive quantity of THC (total hydrocarbons) from being exhausted, and minimized the quantity of fuel wasted.
In the preceding air-layer type two-stroke cycle engine proposed in the Japanese Patent Publication (Kokai) 10-252565, the preceding air was brought in through a number of rubber tubes with lead valves which was equal to the number of scavenging ports. The design thus required a large number of parts and assembly processes, both of which drove the cost up. Furthermore, the supply passages for the air were provided on the outside of the cylinder, so the dimensions of the engine in its axial direction were increased.
In a two-stroke cycle engine, combustion must be kept stable by supplying a rich mixture with little air when the engine is operating under a light load, including when it is idling, and a comparatively thin mixture when it is operating under a heavy load. This will reduce fuel consumption and decrease the harmful component of the exhaust gas. However, in the prior art design proposed in the Japanese Patent Publication (Kokai) 7-139358, the airflow supplied via the supply passages during scavenging is not controlled to conform to the operating state of the engine.
Under light load conditions, then, such as when the engine is idling, too much air is supplied; and it would be difficult to stabilize combustion by limiting the quantity of air admitted to produce a rich mixture. Similarly, it would be difficult to maintain a thin mixture under heavy load conditions in order to reduce the pollutants in the exhaust gas and lower the fuel consumption.
In the invention disclosed in the Japanese Patent Publication (Kokai) 9-125966, a mixture control valve is provided to open and close the mixture passage which connects the carburetor to the crankcase, and an air control valve is provided to open and close the air passage which connects the air cleaner. The mixture control valve and air control valve are linked so that it is possible to control the flow rate of the fuel-air mixture and that of the air in such a way that their ratio remains constant.
In this type of preceding air-layer type two-stroke cycle engine, when the engine is idling the negative pressure in the air passage increases until it is higher than that in the fuel mixture passage. This causes the throttle to open more, suddenly increasing the speed of the engine. The delay in the fuel supply allows the excessively rich fuel mixture to be thinned out by radically increasing the quantity of preceding air. The extra air reduces the concentration of the fuel mixture.
But when the engine is operating at high speed, an increase in the quantity of air will not be followed by an increased quantity of fuel. The concentration of the fuel will decrease and proper combustion will no longer be possible. Problems with acceleration or engine cut-off may result.
However, in the inventions disclosed in the Japanese Patent Publications 7-139358, 10-252565 and 9-125966, no means are provided to control the ratio of air flow to air-fuel mixture flow during normal operation so as to prevent an excessive quantity of air from being supplied when the engine suddenly accelerates as was described above.
Furthermore, when this sort of two-stroke cycle en

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Two-stroke cycle engine does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Two-stroke cycle engine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Two-stroke cycle engine will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2894493

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.