Two-step immunization procedure against the pyramyxoviridae...

Chemistry: molecular biology and microbiology – Vector – per se

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S235100, C435S069100, C435S069300, C424S232100, C424S199100

Reexamination Certificate

active

06180398

ABSTRACT:

FIELD OF INVENTION
The present invention relates to the field of immunology and, in particular, to a vaccination procedure for protection of a host against disease caused by infection with a virus of the paramyxoviridae family, particularly respiratory syncytial virus (RSV).
BACKGROUND TO THE INVENTION
Human parainfluenza virus type 1, 2, 3 and human respiratory syncytial virus (RSV) have been identified as the major viral pathogens responsible for severe respiratory tract infections in infants and young children (ref. 1 to 3—Throughout this specification, various references are referred to in parenthesis to more fully describe the state of the art to which this invention pertains. Full bibliographic information for each citation is found at the end of the specification, immediately following the claims. The disclosures of these references are hereby incorporated by reference into the present disclosure). RSV has also been reported to cause significant morbidity in immunocompromised individuals and the elderly. Globally 65 million infections occur every year resulting in 160,000 deaths (ref. 4). In the USA alone, 100,000 children are hospitalized annually with severe cases of pneumonia and bronchiolitis resulting from an RSV infection (refs. 5, 6). Inpatient and ambulatory care for children with RSV infections has been estimated to cost in excess of $340 million each year in the USA (ref. 7). Severe lower respiratory tract disease due to RSV infection predominantly occurs in infants two to six months of age (ref. 8). The World Health Organization (WHO) and the National Institute of Allergy and Infectious Disease (NIAID) vaccine advisory committees have ranked RSV second only to HIV for vaccine development while the preparation of an efficacious PIV-3 vaccine is ranked in the top ten vaccines considered a priority for vaccine development. Both the annual morbidity and mortality figures as well as the staggering health care costs for managing paramyxoviridae infections including RSV have provided the incentive for aggressively pursuing the development of efficacious RSV vaccines.
RSV is a member of the Paramyxoviridae family of pneumovirus genus (ref. 2). The two major protective antigens of RSV are the envelope fusion (F) and attachment (G) glycoproteins (ref. 9).
In addition to the antibody response generated by the F and G glycoproteins, human cytotoxic T-cells have been shown to recognize the F protein RSV matrix (M) protein, nucleoprotein (N), small hydrophobic protein (SH) and nonstructural protein (lb) (ref. 10), produced following RSV infection. For PIV-3, the protective immunogen are the hemagglutinin-neuramidase (HN) protein and the fusion (F) protein.
Previous attempts to produce a safe and effective RSV vaccine were unsuccessful. Production of live attenuated RSV vaccines has had limited success. The mutants prepared to date have all been either over-attenuated, virulent or genetically unstable. A formalin-inactivated (FI) RSV vaccine developed in the 1960's failed to provide adequate protection in clinical trials (refs. 8, 11, 12). In fact, immunization of seronegative infants with the FI-RSV vaccine resulted in the exacerbation of RSV disease (immunopotentiation) in some vaccinees following exposure to wild type virus. Identification of the major immunoprotective antigens of RSV has provided the scientific rationale for pursuing a subunit approach to RSV vaccine development. However, efficacy of the RSV subunit vaccines tested to date have been inconsistent (ref. 12). There is also conflicting reports in the literature on the ability of an alum-adjuvanted RSV vaccine containing the F protein purified from virus infected cells by immunoaffinity chromatography (PFP-1) to cause enhanced pulmonary pathology (immunopotentiation) following live virus challenge (ref. 13 and 14). There is a definite requirement for the development of a safe and efficacious RSV vaccine.
One of the main obstacles in developing a safe and effective RSV vaccine has been to produce a vaccine formulation that can elicit a protective immune response without causing exacerbated disease. Elucidation of the mechanism(s) involved in the potentiation of RSV disease is important for the design of safe RSV vaccines, especially for the seronegative population. Recent experimental evidence suggests that an imbalance in cell-mediated responses may contribute to immunopotentiation (ref. 15). Enhanced histopathology observed in mice that were immunized with the FI-RSV and challenged with virus could be abrogated by depletion of CD4+ cells or both interleukin-4 (IL-4) and IL-10 (ref. 16). Experimental results indicated that induction of a Th-2 type response may play a role in disease potentiation. BALB/c mice given live virus intranasally or intramuscularly elicited a Th-1 type response, whereas FI-RSV induced a Th-2 type of response. These results were recently substantiated by the finding that BALB/c mice that were immunized with the FI-RSV vaccine had a marked increase in the expression of mRNA (from cells in the bronchoalveolar lavage fluid) for the Th-2 cytokines IL-5 and IL-13 (ref. 17).
Studies on the development of live viral vaccines and glycoprotein subunit vaccines against parainfluenza virus infection are being pursued. Clinical trial results with a formalin-inactivated PIV types 1,2,3 vaccine demonstrated that this vaccine was not efficacious (refs. 33, 34, 35). Further development of chemically-inactivated vaccines was discontinued after clinical trials with a formalin-inactivated RSV vaccine demonstrated that not only as the vaccine not effective in preventing RSV infection but many of the vaccinees who later became infected with RSV suffered a more serious disease. Most of parainfluenza vaccine research has focussed on candidate PIV-3 vaccines (ref. 36) with significantly less work being reported for PIV-1 and PIV-2. Recent approaches to PIV-3 vaccines have included the use of the closely related bovine parainfluenza virus type 3 and the generation of attenuated viruses by cold-adaptation of the virus (refs. 37, 38, 39, 40).
Another approach to parainfluenza virus type 3 vaccine development is a subunit approach focusing on the surface glycoproteins hemagglutinin-neuraminidase (HN) and the fusion (F) protein (refs. 41, 42, 43). The HN antigen, a typical type II glycoprotein, exhibits both haemagglutination and neuraminidase activities and is responsible for the attachment of the virus to sialic acid containing host cell receptors. The type I F glycoprotein mediates fusion of the viral envelope with the cell membrane as well as cell to cell spread of the virus. It has recently been demonstrated that both the HN and F glycoproteins are required for membrane fusion. The F glycoprotein is synthesized as an inactive precursor (F) which is proteolytically cleaved into disulfide-linked F2 and F1 moieties. While the HN and F proteins of PIV-1, 2 and 3 are structurally similar, they are antigenically distinct. Neutralizing antibodies against the HN and F proteins of one PIV type are not cross-protective. Thus, an effective PIV subunit vaccine must contain the HN and F glycoproteins from the three different types of parainfluenza viruses. Antibody to either glycoprotein is neutralizing in vitro. A direct correlation has been observed between the level of neutralizing antibody titres and resistance to PIV-3 infections in infants. Native subunit vaccines for parainfluenza virus type 3 have investigated the protectiveness of the two surface glycoproteins. Typically, the glycoproteins are extracted from virus using non-ionic detergents and further purified using lectin affinity or immunoaffinity chromatographic methods. However, neither of these techniques may be entirely suitable for large scale production of vaccines under all circumstances. In small animal protection models (hamsters and cotton rats), immunization with the glycoproteins was demonstrated to prevent infection with live PIV-3 (refs. 44, 45, 46, 47, 48). The HN and F glycoproteins of PIV-3 have also been produced using recombinant

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Two-step immunization procedure against the pyramyxoviridae... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Two-step immunization procedure against the pyramyxoviridae..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Two-step immunization procedure against the pyramyxoviridae... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2506217

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.