Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid
Reexamination Certificate
2001-09-18
2003-03-18
Whisenant, Ethan C. (Department: 1634)
Chemistry: molecular biology and microbiology
Measuring or testing process involving enzymes or...
Involving nucleic acid
C536S023100, C536S024300, C435S091200
Reexamination Certificate
active
06534273
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to methods for capturing a polynucleotide which may be present in a sample onto a solid support. The invention is particularly useful for separating a target polynucleotide from other material in a sample, and is preferably employed as part of a diagnostic procedure that included nucleic acid amplification to detect the presence of the target polynucleotide.
BACKGROUND OF THE INVENTION
A target polynucleotide is a polynucleotide present in a sample that can be purified from one or more sample components and/or whose presence can be detected using different techniques. Such techniques are typically carried out as part of a diagnostic procedure to detect the presence of a target polynucleotide which is indicative of the presence of an infectious agent or pathogenic condition.
The presence of a target polynucleotide base sequence region, present in a target polynucleotide, can be detected by various methods such as those using nucleic acid probes that hybridize to a target sequence. Probes can be designed to detect different target sequences such as those characteristic of microorganisms, viruses, human genes, plant or animal genes, and/or pathogenic conditions.
A technique for purifying a target polynucleotide, which is often used in diagnostic procedures, involves capturing a target polynucleotide onto a solid support. The solid support retains the target polynucleotide during one or more washing steps of the target polynucleotide purification procedure.
Ranki et al., U.S. Pat. No. 4,486,539 describe a hybridization sandwich technique for capturing and for detecting the presence of a target polynucleotide. The technique involves the capture of the target polynucleotide by a probe bound to a solid support and hybridization of a detection probe to the captured target polynucleotide. Detection probes not hybridized to the target polynucleotide are readily washed away from the solid support. Thus, remaining label is associated with the target polynucleotide initially present in the sample.
Stabinsky, U.S. Pat. No. 4,751,177 describes a method that uses a mediator polynucleotide that hybridizes to both a target polynucleotide and to a polynucleotide fixed on a solid support. The mediator polynucleotide joins the target polynucleotide to the solid support to produce a bound target. A labeled probe can be hybridized to the bound target and unbound labeled probe can be washed away from the solid support.
Englehardt et al., U.S. Pat. Nos. 4,894,324 and 5,288,609, describe a method for detecting a target polynucleotide. The method utilizes two single-stranded polynucleotide segments complementary to the same or opposite strands of the target and results in the formation of a double hybrid with the target polynucleotide. In one embodiment, the hybrid is captured onto a support.
Cape et al., EP Pat. Pub. No. 0 370 694, describe methods and kits for detecting nucleic acids using a solid phase capture means. The methods use oligonucleotide primers labeled with specific binding partners to immobilize primers and primer extension products. The label specifically complexes with its receptor which is bound to a solid support.
SUMMARY OF THE INVENTION
According to one aspect of the invention, there is disclosed a method of capturing a target polynucleotide present in a sample. The method includes the steps of incubating a mixture comprising a target polynucleotide, a capture probe, and an immobilized probe in a first hybridization condition that favors formation of a capture probe:target hybridization complex that includes the capture probe and the target polynucleotide, wherein the first hybridization condition disfavors formation of an immobilized probe:capture probe hybridization complex that includes the immobilized probe and the capture probe; and then incubating the mixture in a second hybridization condition that favors formation of the immobilized probe:capture probe hybridization complex, thereby capturing the target polynucleotide in an immobilized probe:capture probe:target hybridization complex that includes the immobilized probe, the capture probe and the target polynucleotide. In one embodiment, the first incubating step uses a temperature below a T
m
of the capture probe:target hybridization complex and above a T
m
of the immobilization probe:capture probe hybridization complex, and the second incubating step uses a temperature below a T
m
of the immobilization probe:capture probe hybridization complex. Preferably, the second incubating step is achieved by lowering the temperature of the first hybridization condition by at least about 10° C., or by at least about 20° C. In one preferred embodiment the first incubating step uses a temperature of about 60° C. and the second incubating step uses a temperature of about 40° C. or lower. Alternatively, the first incubating step may use a solution having a chemical stringency that favors formation of the capture probe:target hybridization complex and disfavors formation of the immobilization probe:capture probe hybridization complex, and the second incubating step lowers the chemical stringency of the solution, thereby favoring formation of the immobilization probe:capture probe hybridization complex. One embodiment of the method also includes the step of purifying the immobilized probe:capture probe:target hybridization complex. Another embodiment includes the step of detecting the target polynucleotide in the purified immobilized probe:capture probe:target hybridization complex. Preferably, the detecting step comprises hybridizing a labeled probe to the target polynucleotide in the purified immobilized probe:capture probe:target hybridization complex. In another embodiment, the detecting step further includes removing the labeled probe that has not hybridized to the target polynucleotide. One embodiment of the method also includes the step of detecting the target polynucleotide in the immobilized probe:capture probe:target hybridization complex, preferably by hybridizing a labeled probe to the target polynucleotide. This embodiment may also include the step of removing the labeled probe that has not hybridized to the target polynucleotide. Another embodiment of the method includes the step of amplifying the target polynucleotide to produce an amplified nucleic acid. Preferably, the amplifying step is accomplished by transcription-associated amplification. This embodiment may further include the step of detecting the amplified nucleic acid. Preferably, the detecting step includes hybridizing a labeled probe to the amplified nucleic acid that has a sequence complementary to the target polynucleotide sequence, and may also include removing the labeled probe that has not hybridized to the amplified nucleic acid. In one embodiment of the method the immobilized probe includes a capture probe-binding region of at least five nucleotide base recognition groups in length, and the capture probe includes an immobilized probe-binding region of at least five nucleotide base recognition groups in length, provided that the capture probe-binding region is complementary to the immobilized probe-binding region. Preferably, the capture probe-binding region of the immobilized probe includes (a) a first backbone containing at least one sugar-phosphodiester linkage, or at least one peptide nucleic acid group, at least one phosphorothioate linkage, or a combination thereof, and (b) at least ten nucleotide base recognition groups joined to the first backbone, wherein each nucleotide base recognition group is capable of hydrogen bonding with adenine, guanine, cytosine, thymine, uracil or inosine; and the immobilized probe-binding region of the capture probe includes (a) a second backbone containing at least one sugar-phosphodiester linkage, or at least one peptide nucleic acid group, at least one phosphorothioate linkage, or a combination thereof, and (b) at least ten nucleotide base recognition groups joined to the second backbone, which are capable of hydrogen bonding to the nucleotide base recognition g
Becker Michael M.
Brentano Steven T.
Majlessi Mehrdad R.
Nunomura Kiyotada
Shaw Jay H.
Gen-Probe Incorporated
Gritzmacher Christine A.
LandOfFree
Two-step hybridization and capture of a polynucleotide does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Two-step hybridization and capture of a polynucleotide, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Two-step hybridization and capture of a polynucleotide will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3021801