Two-stage rail-to-rail class AB operational amplifier

Amplifiers – With semiconductor amplifying device – Including differential amplifier

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

330255, 330257, H03F 345

Patent

active

052948927

ABSTRACT:
An operational amplifier having a differential signal input and an output has an input stage comprising a differential amplifier having a differential signal input and a differential signal output. The differential amplifier includes a first pair of transistors of opposite conductivity type having control elements connected to receive one side of the differential signal input, and second and third pairs of transistors of opposite conductivity type having control elements connected to receive another side of the differential signal input. The differential output of the differential amplifier is developed by outputs of the second and third pairs of transistors. A high-swing output section is connected to receive the differential signal output directly from the input stage. The differential amplifier has first and second current sources connected respectively between transistors of the first, second and third transistor pairs of a first conductivity type and a voltage supply, and between transistors of the first, second and third transistor pairs of a second conductivity type and a reference potential. A summing circuit is also provided in the input stage for summing the currents in the first, second, and third transistor pairs to produce the differential output of the input stage. The operational amplifier can be constructed of either bipolar or MOS transistors. One embodiment of the circuit provides an improved power supply rejection ratio through the use of current mirrors in a differential summing circuit to maintain output nodes of the input circuit at voltages within 2V.sub.BE of the supply voltage and reference potential, or ground.

REFERENCES:
patent: 4240040 (1980-12-01), Saari
patent: 4333058 (1982-06-01), Hoover
R. J. Wildar, "Low-voltage techniques", IEEE Jour. solid State Cir., vol. SC-13, pp. 836-846, Dec. 1978.
Huijsing et al., "Low-voltage operational amplifier with rail-to-rail input and output ranges", IEEE J. Solid State Cir., vol. SC-20, No. 6 pp. 1144-1150, Dec. 1985.
Fonderie et al., IEEE J. Solid State Cir., vol. SC-24, No. 6, pp. 1551-1559 Dec. 1989.
Callewaert et al, "Class AB CMOS amplifiers with high efficiency", IEEE J. Solid State Cir., vol. 25, No. 3, pp. 684-692, Jun. 1990.
Brehmer et al., "Large-swing CMOS power amplifier", IEEE J. Solid State Cir. vol. SC-18, pp. 624-629, Dec. 1983.
Fisher, "A high-performance CMOS power amplifier", IEEE J. Solid State Cir. vol. SC-20, No. 6, pp. 1200-1205, Dec. 1985.
Monticelli, "A quad CMOS single-supply op amp with rail-to-rail output swing", IEEE J. Solid State Cir., vol. SC-21, No. 6, pp. 1026-1034, Dec. 1986.
Fisher, "A highly linear CMOS buffer amplifier", IEEE J. Solid State Cir. vol. SC-22, No. 3, pp. 330-334, Jun. 1987.
Steyaier et al, "A high-dynamic-range CMOS op amp with low-distortion output structure", IEEE J. Solid State Cir., vol. SC-22, No. 6, pp. 1204-1207 Dec. 1987.
Babenezhad, "A rail-to-rail CMOS op amp", IEEE J. Solid State Cir., vol. SC-23 No. 6, pp. 1414-1417, Dec. 1988.
Pardoen et al. "A rail-to-rail input/output CMOS power amplifier", IEEE J. Solid State Cir., vol. SC-25, No. 2, pp. 501-504, Apr. 1990.
Babanezhad et al., "A programmable gain/loss circuit", IEEE J. Solid State Cir., vol. SC-22, No. 6, pp. 1082-1090, Dec. 1987.
Nagaraj, "Large-swing CMOS buffer amplifier", IEEE J. Solid State Cir., vol. SC-24, pp. 181-183, Feb. 1989.
Mistlberger et al., "Class-AB high-swing CMOS power amplifier", IEEE J. Solid State Cir., vol. SC-27, No. 7, pp. 1089-1092, Jul. 1992.
Malhi et al., "A low-voltage micropower JFET/bipolar operational amplifier", IEEE J. Solid State Cir., vol. SC-16, No. 6, pp. 669-676, Dec. 1981.
Davis et al., "Design techniques for improving the HF response of a monolithic JFET operational amplifier", IEEE J. S. State Cir., vol. SC-19, No. 6, pp. 978-985 Dec. 1984.
Vyne et al., "A monolithic P-channel JFET quad op amp with in-package trim and enhanced gain-bandwidth product", IEEE J. S. State Cir., vol. SC-22, No. 6, pp. 1130-1138, Dec. 1987.
Seevinck et al., "A low-distortion output stage with improved stability for monolithic power amplifiers", IEEE J. Solid State Cir., vol. SC-23, No. 3 pp. 794-801 Jun. 1988.
Widlar et al., "A monolithid power op amp", IEEE J. S. State Cir., vol. SC-23, No. 2, pp. 527-535, Apr. 1988.
Quiting, "A CMOS power amplifier with a novel output structure", IEEE J. Solid State Cir., vol. SC-27, No. 2, pp. 203-207, Feb. 1992.
Fondirie et al., "Operational amplifier with 1-V rail-to-rail multipath-driven Output Stage", IEEE J. Solid State Cir., vol. 26, No. 12, Dec. 1991.
Gilbert, "A new wide-band amplifier technique", IEEE J. Solid State Cir., vol. SC-3 No. 4, Dec. 1968.
Castello et al., "A high-performance micropower switched-capacitor Filter", IEREE J. Solid State Cir., vol. SC-20, No. 6, Dec. 1985.
Fiez et al., "A family of high-swing CMOS operational amplifiers", IEEE J. Solid State Cir., vol. 24, No. 6, pp. 1683-1687, Dec. 1989.
Op't Eynde et al., "A CMOS large-swing low-distortion three-stage class AB power amplifier", IEEE J. Solid State Cir., pp. 265-273, vol. 25, No. 1, Feb. 1990.
Lee et al., "A high slwe-rate CMOS amplifier for analog signal processing", IEEE J. Solid State Cir., vol. 25, No. 3, pp. 885-889, Jun. 1990.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Two-stage rail-to-rail class AB operational amplifier does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Two-stage rail-to-rail class AB operational amplifier, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Two-stage rail-to-rail class AB operational amplifier will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1538316

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.