Two-stage modular wide-band optical amplifiers

Optical: systems and elements – Optical amplifier – Optical fiber

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S349000

Reexamination Certificate

active

06304370

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention is directed to optical amplifiers for wavelength division multiplexed (WDM/DWDM) optical networks, and in particular to a two stage modular fiber amplifier.
2. Background Art
The ITU has standardized wavelength-division multiplexed optical networks in which several optical channels are transmitted through a single optical fiber. Such networks can transport many signals, each transmitted over a separate carrier wavelength (channel), with each channel falling on one of the ITU grid frequencies. The ITU grid has frequencies spaced by 100 GHz, which corresponds to about 0.8 nm for wavelengths close to 1550 nm.
One of the advantages of WDM systems is that the optical component cost can be shared between all the transmitted channels. For example, current optical amplifiers, such as Erbium doped fiber amplifiers (EDFA) can simultaneously amplify a plurality of channels in the band from 1525 nm to 1610 nm.
Numerous problems are encountered in designing EDFAs for WDM networks. For example, the gain is not uniform across the WDM wavelength range of the EDFA. Therefore, the EDFAs exhibit a wavelength dependent gain, called gain tilt.
Gain tilt measures the change in the profile of the gain for each transmission channel at the actual value of the gain of the amplifier module with respect to the gain profile at the nominal value of the gain, i.e. at the value for which the amplifier is designed. For example, when the gain at 1550 nm is changed by 1 dB, the gain at 1530 nm changes by approximately 1.7 dB.
Gain tilt depends only on the physics of the dopant in the host fiber glass, and becomes a significant issue to consider in D/WDM networks. While no chemical solutions (dopants, fluoride, etc.) have yet been found for obtaining a flatt gain profile, electronic solutions are currently employed.
One known solution is to select the wavelengths for various channels amplified by the EDFA as a function of the gain variations of the different available pumps, so as to have similar gains for all channels. However, this solution becomes difficult when the number of channels is large.
Another solution is “gain clamping”, which means maintaining the amplifier gain constant on all channels with an idler or lasing. However, this solution requires use of twice the number of laser pumps to provide the necessary extra photons.
Another solution is “loss padding”, which implies tuning the loss of each span to match the nominal value for the amplifier or, in other words, to operate all amplifiers of the link at their nominal gain. Furthermore, this solution has the disadvantage of requiring variable optical attenuators (VOA) to be placed in each span, before or in the middle of the amplifier. This solution is not very robust in the presence of variations in losses and optical powers in the system over time and with temperature. Also, the system noise performance is limited to always be at the worst case. “Gain clamping” methods combined with “loss padding” slightly improve the robustness of the system, at the price of much more expensive pump lasers.
Another problem encountered in designing EDFAs for WDM networks is that, because the EDFA uses a single light source, the output power is shared among all channels, so that for N channels the output power/channel is roughly 1/N times the output for a single channel.
Still another problem in WDM networks is that stronger channels can saturate the EDFA gain, thereby limiting the gain of the weaker channels. This latter problem is of particular importance in ring, bus, and star networks, where channels propagate over widely varying distances. A solution to this problem is again to introduce VOAs in the stronger channels, which means additional equipment and power loss.
The prior art fails to provide cost effective solutions for amplification of bidirectional multi-channel optical signals.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a modular architecture for a fiber amplifier, which alleviates totally or in part the drawbacks of the prior art EDFAs.
According to one aspect of the invention, there is provided a modular unidirectional fiber amplifier for a wide-band optical signal transporting a plurality of first band transmission channels and a plurality of second band transmission channels, the modular fiber amplifier comprising, a first gain stage for receiving the wide-band optical signal and passing through the second-band transmission channels and providing a first-band amplified version of the first-band transmission channels, means for separating the first-band amplified version from the second-band transmission channels, a second gain stage connected in series with the first gain stage for receiving the second-band transmission channels and providing a second-band amplified version of the second-band transmission channels, means for combining the first-band amplified version and the second-band amplified version, and by-pass means, connected in parallel to the second gain stage, for routing the first-band amplified version from the means for separating to the means for combining.
In another embodiment of the invention there is provided a modular unidirectional fiber amplifier for a wide-band optical signal transporting a plurality of first band transmission channels and a plurality of second band transmission channels, the modular fiber amplifier comprising, a first gain stage for receiving the wide-band optical signal and passing through the second-band transmission channels to provide a first-band amplified version of the first-band transmission channels, an optical splitter/combiner for separating the first-band amplified version from the second-band transmission channels and for combining the first-band amplified version to a second-band amplified version, and a second gain stage for receiving the second-band transmission channels and providing the second-band amplified version of the second-band transmission channels.
In a further embodiment of the invention there is provided a modular unidirectional fiber amplifier for a wide-band optical signal transporting a plurality of first band transmission channels and a plurality of second band transmission channels, the modular fiber amplifier comprising, a first gain stage for receiving the wide-band optical signal and passing through the second-band transmission channels to provide a first-band amplified version of the first-band transmission channels, means for separating the first-band amplified version from the second-band transmission channels, a second gain stage for receiving the second-band transmission channels, and providing a second-band amplified version of the second-band transmission channels and for receiving the second-band amplified version and further amplifying same, means for reflecting the second-band amplified version towards the second gain stage for further amplification, and means for combining the first-band amplified version and the further amplified second-band amplified version.
A main advantage of the architecture according to the invention is that it provides optical amplification with a substantially flat gain over a wide bandwidth (BW>50 nm).
Another advantage of the architecture according to the invention is modularity. The gain region of a fiber amplifier is separated into a long-wavelength band stage and a short wavelength band stage in a modular fashion. In this way, the gain can be provided for either one or both bands, as required. Furthermore, the long and short wavelength band stages can be deployed separately or together, as required.
Still another advantage is that the cost of deploying EDFAs is significantly reduced in comparison to using a single wide-band region EDFA. It also reduces the requirements for attenuators to prevent EFDA saturation.


REFERENCES:
patent: 6049418 (2000-04-01), Srivastava et al.
patent: 6104527 (2000-08-01), Yang

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Two-stage modular wide-band optical amplifiers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Two-stage modular wide-band optical amplifiers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Two-stage modular wide-band optical amplifiers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2554475

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.