Two shot molded inkjet printhead lid for laser welding

Incremental printing of symbolic information – Ink jet – Ejector mechanism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C347S108000, C029S890100

Reexamination Certificate

active

06796636

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to inkjet printheads. In particular, it relates to printhead lids formed by two shot injection molding useful during laser welding of the lid to an inkjet printhead body.
BACKGROUND OF THE INVENTION
The art of inkjet printing is relatively well known. In general, an image is produced by emitting ink drops from an inkjet printhead at precise moments such that they impact a print medium, such as a sheet of paper, at a desired location. The printhead is supported by a movable print carriage within a device, such as an inkjet printer, and is caused to reciprocate relative to an advancing print medium and emit ink drops at such times pursuant to commands of a microprocessor or other controller. The timing of the ink drop emissions corresponds to a pattern of pixels of the image being printed. Other than printers, familiar devices incorporating inkjet technology include fax machines, all-in-ones, photo printers, and graphics plotters, to name a few.
A conventional thermal inkjet printhead includes access to a local or remote supply of color or mono ink, a heater chip, a nozzle or orifice plate attached to the heater chip, and an input/output connector, such as a tape automated bond (TAB) circuit, for electrically connecting the heater chip to the printer during use. The heater chip, in turn, typically includes a plurality of thin film resistors or heaters fabricated by deposition, masking and etching techniques on a substrate such as silicon.
To print or emit a single drop of ink, an individual beater is uniquely addressed with a small amount of current to rapidly heat a small volume of ink. This causes the ink to vaporize in a local ink chamber (between the heater and nozzle plate) and be ejected through and projected by the nozzle plate towards the print medium.
During manufacturing of the printheads, a printhead body gets stuffed with a back pressure device, such as a foam insert, and saturated with mono or color ink. A lid adheres or welds to the body via ultrasonic vibration. Ultrasonic welding, however, sometimes cracks the heater chip, introduces and entrains air bubbles in the ink and compromises overall printhead integrity. Adhesion has problems because of its impractically long cure time.
Even further, as demands for higher resolution and increased printing speed continue, heater chips are often engineered with more complex and denser heater configurations which raises printhead costs. Thus, as printheads evolve a need exists to control overall costs, despite increasing heater chip costs, and to reliably and consistently manufacture a printhead without causing cracking of the ever valuable heater chip.
Regarding the art of laser welding, it too is relatively well known. In general, with reference to
FIG. 1
, first and second work pieces, embodied as an upper work piece
100
laid on a lower work piece
120
along a weld interface
180
, become welded to one another by way of an irradiated beam
140
of laser light. As is known, the beam
140
passes through the upper work piece, which is transparent to laser light, where it gets absorbed by the lower work piece, which is laser light absorbent. As the beam irradiates, the weld interface heats up and causes the bottom surface of the upper work piece and the upper surface of the lower work piece to melt and meld together. Upon cooling, a weld joint exists. An optical path between a laser light source (not shown) and the to-be-welded work pieces may include a lens
160
, for proper focusing, or other optical elements, such as mirrors, fiber optic strands, scanning structures or other. A clamping device (not shown) typically provides a pressing engagement of the work pieces to maintain relative positioning and good surface contact during welding. The beam of laser light may advance relative to the parts, such as in contour welding, or may irradiate the substantial entirety of the weld interface at substantially the same time in a simultaneous welding operation.
As is apparent in
FIG. 1
, the upper work piece
100
comprises a generally homogeneous material that allows laser light to transit the work piece in area A at a substantially equivalent rate as compared to area B or any other area of the work piece.
Yet, when welding a lid (upper work piece) and body (lower work piece) of a container together, for example, sometimes a need exists to decorate, adorn, color code and/or emboss the lid and/or to hide the contents of the container from a user by making the lid opaque to visible light or other. In such instances, the lid may comprise constituents that make laser welding impractical, difficult or substantially impossible.
In the specific instance of making the lid opaque, perhaps to maintain the contents of a container secret, one presently known solution to the above includes the addition of an organic pigment to produce a homogeneous-composition lid that has laser light transparency characteristics and visible light opacity characteristics. As a result, a manufacturer can perform laser welding while still preventing a user from viewing the contents of the container. Such pigments, however, are exceptionally expensive and have limited chemical compatibility with some embodiments of lids.
Moreover, when an economic or other need exists to make at least the lid a plastic material, the above pigment solution often requires additional manufacturing steps such as painting or coating of the plastic to achieve the necessary opacity.
Accordingly, a need exists in the laser welding arts for economically and efficaciously laser welding two work pieces when one of the work pieces simultaneously requires laser light transparency characteristics and laser or visible light opacity characteristics.
SUMMARY OF THE INVENTION
The above-mentioned and other problems become solved by applying the apparatus and method principles and teachings associated with the hereinafter described two shot molded inkjet printhead lid for laser welding.
In one embodiment, an inkjet printhead lid has a light opacity and a laser light transparent component formed in two molds. Each of the lid components has a periphery and the laser light transparency periphery extends beyond the periphery of the light opacity component. Preferably, it extends beyond the periphery of the light opacity component on all sides thereof Each of the lid components may comprise unique and varied shapes. In a particular embodiment, each of the lid components has a surface that exists substantially coplanar with the other. The lid components may further exist flush with one another or not. Mechanical and chemical interlocking features may or may not exist between the lid components.
An inkjet printhead becomes formed when an inkjet printhead body laser welds to the laser light transparent component of the lid. Preferably, the body welds to the laser light transparent component of the lid in an area between the peripheries of the two lid components. Contemplated techniques for laser welding the lid and body include advancing a laser beam in the area between the peripheries or simultaneously welding the area between the peripheries. Inkjet printers for containing the printhead are also disclosed.
In an injection molding chamber, two sources of injection molding materials inject first and then second molds to produce the two lid components. One of the two sources of injection molding materials has laser light transparency characteristics while the other has light opacity characteristics.
These and other embodiments, aspects, advantages, and features of the present invention will be set forth in the description which follows, and in part will become apparent to those of ordinary skill in the art by reference to the following description of the invention and referenced drawings or by practice of the invention. The aspects, advantages, and features of the invention are realized and attained by means of the instrumentalities, procedures, and combinations particularly pointed out in the appended claims.


REFERENCES:
patent: 4023005 (1977-05-

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Two shot molded inkjet printhead lid for laser welding does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Two shot molded inkjet printhead lid for laser welding, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Two shot molded inkjet printhead lid for laser welding will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3269413

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.