Two-pedal vehicular acceleration control system

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Indication or control of braking – acceleration – or deceleration

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S022000, C701S069000, C701S079000, C180S170000

Reexamination Certificate

active

06480779

ABSTRACT:

BACKGROUND OF INVENTION
1. Technical Field
The present invention relates generally to a drive train control system for regulating vehicle acceleration and braking systems and for improving safety of vehicle operation at cruising speeds and low speed operation. More specifically, the invention relates to an electronic system adapted to adjust vehicle acceleration as desired and designated by the driver by way of an “intelligent” drive train, regardless of current traveling speed or terrain, and to monitor and control operation of brake and throttle systems for controlling the vehicle's velocity and direction of travel, as well as increasing the vehicle's operational efficiency
2. Background Art
The use of microprocessor controlled systems in automobiles has led to a bewildering array of options and driver controls, some of which, like tape and CD players, cellular phones, geo-positioning systems and the like present the possibility for diverting a driver's attention from the primary task of safe vehicle operation. On the other hand, some microprocessor controlled systems have simplified vehicle operation. Such systems include cruise control and climate control features that, once set, have the capability of automatically maintaining a specified condition until the driver adjusts the setting to modify that condition.
Cruise control systems are now well known as a valuable automotive option that allows a driver some degree of additional freedom of movement during long journeys because mental and physical effort is no longer required for maintaining a substantially constant speed of the vehicle. The resulting freedom reduces driver fatigue, because with cruise control, it is no longer necessary for the driver to continually maintain foot pressure against the accelerator pedal to keep a steady vehicle pace.
In today's modern vehicles, cruise control systems will maintain a selected speed over level ground and even add power for constant ascent speed of the vehicle up an incline. During downhill operation, however, conventional cruise control systems only have the option of reducing the throttle setting to allow the vehicle to coast against experienced drag forces such as that imposed by the gears of the transmission, friction and air. When a down-slope reaches a certain severity, there will be a tendency for an automobile to gain speed due to gravity when the cruise control is engaged, and even without power being supplied to the drive train.
A similar downhill increase in speed may also arise during normal vehicle operation without use of cruise control. The increase in speed may not be noticed by the driver and can detrimentally lead to traveling speeds above posted limits. In severe instances, excessive speed may endanger the lives of the driver and other occupants when safe operating conditions are exceeded. At such times, opportune activation of the braking system of the vehicle can return or maintain the vehicle at a safe speed. Such intervention could advantageously be automated so that driver recognition of the excessive situation is not required. Instead, the condition could automatically be sensed by onboard monitoring systems and appropriate control be taken over the vehicle using existing braking and power supply systems. This type of automated coordination between braking and acceleration would increase the safety factor associated with vehicle operation. Most advantageously, and as will be discussed in some detail hereinbelow, the control system for an integrated power train of the vehicle that incorporates both a power supplying sub-system and a braking sub-system can be provided which requires only that the driver indicate the degree of acceleration or deceleration that is desired. In the event that no acceleration change is indicated, constant speed will be maintained, even if that speed is zero, indicating a standing condition of the vehicle.
Another condition that could benefit from coordinated operation of braking and acceleration controls is low speed maneuvering, especially in high density traffic situations. A vehicle adapted for automatic application of brakes, to slow a vehicle or bring it to a complete stop, would allow a driver to become more alert concerning traffic activity in the vicinity of the vehicle.
Another disadvantage associated with conventional automobile design is the placement and configuration of the accelerator and brake pedals. In both automatic and manual transmission vehicles, the accelerator and brake pedals are designed to both be actuated with the driver's right foot. Necessarily, the driver must move his or her right foot between the pedals to change between powering and braking conditions. Oftentimes, the time that it takes to move the right foot from one pedal to the other and affect actuation of the second pedal is crucial; for instance, the delay caused by moving the right foot from the accelerator to the brake and engage the brake system can result in an accident that could have otherwise been avoided if immediate actuation of the brake pedal had been facilitated using the left foot.
This type of left foot control, however, is dissuaded by conventional pedal arrangement. Normally, the brake pedal is positioned sufficiently to the right near the accelerator that the left foot cannot be comfortably rested near or upon that pedal in a manner similar to that accommodated by the placement and configuration of the accelerator pedal for the right foot of the driver. Still further, the feel of the two pedals is different to the driver. The accelerator is biased toward the driver using a relatively soft spring so that a comparatively low foot pressure is required for changing or maintaining the degree to which the accelerator is depressed. Also, the accelerator is specially arranged so that the driver's right heel can be rested on the floor board below the accelerator, with the sole of the foot resting on the accelerator pedal engagement surface during travel.
On the other hand, the brake pedal is typically biased toward the driver using a substantially greater spring force so that more actuation pressure is required for operating the brake pedal than the accelerator pedal. As a result, the feel of the brake pedal to the driver is different from that of the accelerator pedal. Furthermore, because the brake pedal is intended to be engaged by the driver's right foot, the brake pedal is positioned substantially adjacent to the accelerator pedal at a distance from where the left foot of the driver will normally rest during typical driving conditions. As a result, conventionally configured and positioned brake pedals intentionally do not lend themselves to left foot actuation.
The intended right foot operation of the brake and accelerator pedals, however, is not always followed. This is especially true for very cautious driver's and others who tend to “ride” the brake during travel. This tendency is often fostered by the driver's desire to be able to quickly actuate the brake pedal, for instance, in an emergency situation. Because the brake pedal is not positioned for left foot actuation, undue driver fatigue can result because the left foot must be held at an uncomfortable position above or adjacent to the brake pedal, ready to take immediate action. Detrimentally, the condition of “riding” the brake often results as the brake pedal is unintentionally depressed to greater or lesser degrees during travel. This condition not only adversely affects performance and economy of the vehicle since the opposed braking and powering systems are simultaneously engaged, but undue wear and tear also result because of this simultaneous engagement. For instance, brake pads will have a much shorter operational life in the car of a driver who “rides” the brake than in one in which simultaneous pedal engagement is avoided. Therefore, it can be readily appreciated that a system that typically prevents such simultaneous engagement would be advantageous if included in standard, or at least optional vehicle designs.
I

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Two-pedal vehicular acceleration control system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Two-pedal vehicular acceleration control system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Two-pedal vehicular acceleration control system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2922063

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.