Optical: systems and elements – Optical amplifier – Beam combination or separation
Reexamination Certificate
2001-07-23
2002-12-17
Hellner, Mark (Department: 3663)
Optical: systems and elements
Optical amplifier
Beam combination or separation
C359S341200
Reexamination Certificate
active
06496305
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to an optical amplifier, and more particularly relates to the use of a single optical amplifier to amplify signals traveling through a plurality of fibers.
BACKGROUND OF THE INVENTION
A conventional 4-fiber optical amplifier is illustrated in FIG.
1
. The optical amplifier node
10
has a first input fiber
12
that couples with a first variable optical attenuator
18
for attenuating optical signals carried over the first input fiber
12
. The variable optical attenuator
18
can be either before or after an amplifier
14
. In this instance, the optical signals leave the optical attenuator
18
and pass to the amplifier
14
. The resulting amplified optical signals exit the amplifier
14
and pass to a first output fiber
16
. A second input fiber
20
carries optical signals entering from the same direction for from a second direction opposite the direction of the signals in the first input fiber
12
. The second input fiber
20
couples to a second variable optical attenuator
26
. The attenuated optical signals pass to a second amplifier
22
. The amplified output from the second amplifier
22
passes to the second output fiber
24
.
In this conventional optical amplifier node, each signal path requires a separate optical amplifier. As optical amplifiers are costly, the use of multiple amplifiers poses a significant cost for constructing optical networks.
SUMMARY OF THE INVENTION
There is a need for an optical amplifier node that uses a single amplifier to amplify signals travelling in different directions, or to use a single amplifier to amplify signals traveling in multiple fibers. The present invention is directed toward further solutions. In accordance with aspects of the present invention, an optical amplifier node has a first and second input fiber in communication with a first combiner. A first amplifier is also in communication with the first combiner. A first de-combiner is in communication with the first amplifier, and first and second output fibers are in communication with the first de-combiner. The first and second input fibers, in accordance with one aspect of the present invention, each support signal traffic traveling in opposite, or the same, directions.
The combiners and de-combiners can take the form of interleavers in accordance with one embodiment of the present invention. The optical interleaver can take an optical signal and separate it into, e.g., odd and even channels when the optical signal passes through the interleaver in a first direction or fiber. A number of odd and even channels can also pass through the interleaver in a second direction, opposite to the first direction, and the interleaver will combine those odd and even signals into a combined signal. Further, a number of odd and even channels can also pass through the interleaver in a second fiber, parallel to the first direction, and the interleaver will combine those odd and even signals into a combined signal. The interleaver can separate and combine other types of signals, and in different ways including by bit, byte, signal, channel, wavelength, band, and the like.
The combiner and de-combiner can also take the form of a number of other network components such as, multiplexors, de-multiplexors, L/C/S combiners and de-combiners, fiber Bragg gratings, thin film filters, holographic filters, and the like.
The optical amplifier node, in accordance with a further aspect of the present invention, has a first variable optical attenuator in communication with one of the first input fiber and the first output fiber. The optical amplifier node further has a second variable optical attenuator in communication with one of the second input fiber and the second output fiber.
In addition, the optical amplifier node can have a second amplifier in communication with an L/C splitter and L/C combiner. The function of the L/C splitter is to separate two wavelength bands spatially into two separate fibers. The C band is commonly defined as 1530 nm to 1565 nm, while the L band is commonly defined as 1570 nm to 1610 nm. The L/C combiner takes two separate C and L wavelength bands, and combines them accordingly. Alternatively, the L/C splitter and combiner can be an L/C/S splitter and an L/C/S combiner. The function of the L/C/S splitter is similar to that of the L/C version, except that the LIC/S splitter separates three wavelength bands spatially into three separate fibers. The S band is commonly defined as 1490 nm to 1525 nm. The L/C/S combiner takes three separate C, L, and S wavelength bands and combines them accordingly.
In addition, the optical amplifier can have a Raman amplifier (co- and/or counter-propagating). The function of the Raman amplifier is to use the nonlinear effect in fibers to impart additional gain to the signals by co- and/or counter-propagating additional Raman pump wavelength signals in the fiber(s). Each fiber must have its own Raman amplifier, unlike the optical amplifier, which can be shared. Alternatively, a single Raman amplifier can be shared between many fibers by using an optical splitter.
Prior to a signal reaching the input of the optical amplifier node, the signal can travel through a multiplexor in communication with the combiner. A dispersion compensation module can be positioned on the communication path between the multiplexor and the first combiner. A dispersion compensation module can also be positioned on the communication path between the first combiner and the first amplifier to compensate for dispersion. Alternatively, the optical amplifier node can have a first amplifier that is a multistage access amplifier with an integrated dispersion compensation module. The dispersion compensation module can be shared between a plurality of fibers.
The optical amplifier node, in accordance with other aspects of the present invention, includes a demultiplexor in communication with the first de-combiner off of the output fiber. A dispersion compensation module can be positioned on the communication path between the demultiplexor and the first de-combiner.
Aspects of the present invention further include a method of amplifying an optical signal. The method begins with routing signal traffic traveling originating from opposite directions, or the same direction, through a first combiner to combine each of the traveling signals into a combined signal. The method continues with routing the combined signal through a first amplifier to amplify that signal. The combined signal is then routed through a first de-combiner to separate the combined signal into the distinct signals traveling in opposite, or the same, directions. The method can further include the step of routing the signals originating from opposite, or the same, directions through variable optical attenuators. Alternatively, the method can include the step of routing the combined signal through an L/C/S splitter, a second amplifier, and an L/C/S combiner.
The signals can travel through one of a multiplexor and a demultiplexor at points external to the amplifier. The method can further include the step of routing the combined signal through a dispersion compensation module, either as a stand-alone module, or as a part of a mid-stage access amplifier having a dispersion compensation module built within.
The optical amplifier node, according to still another aspect of the present invention, can include a first and second input fiber in communication with a first interleaver. The optical amplifier node further includes a first amplifier in communication with the first combiner. A first de-combiner is in communication with the first amplifier. At least two dispersion compensation modules are in communication with the first de-combiner. A second combiner is in communication with at least two dispersion compensation modules. A second amplifier is in communication with the second combiner. A second de-combiner is in communication with the second amplifier, and a first and second output fiber are in communication with the second de-combiner.
In accordance with still another embodim
Azizoglu Murat
Bloch Jonathan C.
Khatri Farzana I.
Spock Derek
Swanson Eric Arthur
Hellner Mark
Lahive & Cockfield LLP
Sycamore Networks, Inc.
LandOfFree
Two fiber support with single optical amplifier does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Two fiber support with single optical amplifier, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Two fiber support with single optical amplifier will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2966649