Two-dimensional magnetic resonance tomographic microscopy

Electricity: measuring and testing – Particle precession resonance – Using a nuclear resonance spectrometer system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S309000

Reexamination Certificate

active

07042216

ABSTRACT:
A method, apparatus, and article of manufacture provide the ability to conduct magnetic resonance tomographic microscopy. A two-dimensional non-crystalline sample is placed under the influence of a static polarizing first magnetic field. A radio-frequency field is then introduced perpendicular to the first magnetic field. To conduct the tomography, two or more magnetically resonant spins of the sample are simultaneously obtained by sequentially angularly rotating, around a prescribed axis, the sample with respect to a ferromagnetic sphere having a second magnetic field. The obtained spins are then used to reconstruct an image of the sample using computerized tomography.

REFERENCES:
patent: 5406479 (1995-04-01), Harman
patent: 5619139 (1997-04-01), Holczer et al.
patent: 6377048 (2002-04-01), Golan et al.
patent: 6653832 (2003-11-01), Wind et al.
patent: 6670811 (2003-12-01), Wind et al.
patent: 6836115 (2004-12-01), Wind et al.
patent: 6897654 (2005-05-01), Barbic
P. C. Lauterbur, Image Formation By Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance, Nature (London) 242-243, 190 (1973).
P. Mansfield et al., NMR ‘Diffraction’ in Solids?, J. Phys. C 6, L422-1426, (1973).
J. Aguayo et al., Nuclear Magnetic Resonance Imaging of a Single Cell, Nature (London) 322, 190-191, (1986).
S. C. Lee et al., Communications: One Micrometer Resolution NMR Microscopy, J. Magn. Reson. 150, 207-213, (2001).
P. Mansfield et al., “Diffraction” and Microscopy in Solids and Liquids by NMR, Phys. Rev. B 12, 3618-3634 (1975).
J. A. Sidles, Noninductive Detection of Single-Proton Magnetic Resonance, Appl. Phys. Lett. 58, 2854-2856, (1991).
J. A. Sidles et al., Magnetic Resonance Force Microscopy, Rev. Mod. Phys. 67, 249-265 (1995).
D. Rugar et al. Mechanical Detection of Magnetic Resonance, Nature (London) 360, 563-566 (1992).
D. Rugar et al., Force Detection of Nuclear Magnetic Resonance, Science 264, 1560-1563, (1994).
Z. Zhang et al. Observation of Ferromagnetic Resonance in a Microscopic Sample Using Magnetic Resonance Force Microscopy, Appl. Phys. Lett. 68, 3-pp. 2005-2007, (1996).
K. Wago et al., Low-Temperature Magnetic Resonance Force Detection, J. Vac. Sci. Technol. B 14, 1197-1201, (1996).
K. J. Bruland et al., Force-Detected Magnetic Resonance in a Field Gradient of 250 000 Tesla per Meter, Appl. Phys.Lett. 73(21), 3159-3161, (1998).
B. C. Stipe et al., Magnetic Dissipation and Fluctuations in Individual Nanomagnets Measured by Ultrasensitive Cantilever Magnetometry, Phys. Rev. Lett. 86, 2874-2877, (2001).
T. D. Stowe et al., Attonewton Force Detection Using Ultrathin Silicon Cantilevers, Appl. Phys. Lett. 71, 288-290, (1997).
O. Zuger et al., First Images From a Magnetic Resonance Force Microscope Appl. Phys. Lett. 63, 2496-2498, (1993).
O. Zuger et al., Three-Dimensional Imaging with a Nuclear Magnetic Resonance Force Microscope, J. Appl. Phys. 79, 1881-1884, (1996).
M. Barbic, Magnetic Resonance Diffraction Using the Magnetic Field from a Ferromagnetic Sphere, J. Appl. Phys. 91, 9987-9994, (2002).
M. Barbic et al.Sample-Detector Coupling in Atomic Resolution Magnetic Resonance Diffraction, J. Appl. Phys. 92, 7345-7354, (2002).
P. Streckeisen et al., Instrumental Aspects of Magnetic Resonance Force Microscopy, Appl. Phys. A: Mater. Sci. Process. A66, S341-S344, (1998).
C. Petit, Self-Organization of Magnetic Nanosized Cobalt Particles**, Adv. Mater. (Weinheim, Ger.) 10, 259-261, (1998).
S. Sun et al., Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices, Science 287, 1989-1992, (2000).
A. F. Puntes et al., Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt, Science 291, 2115-2117, (2001).
T. Hyeon et al., Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites Without a Size-Selection Process, J. Am. Chem. Soc. 123, 12798-12801, (2001).
D. R. Baselt et al., A High Sensitivity Micromachined Biosensor, Proc. IEEE 85, 672-680, (1997).
M. A. Lantz et al., High Resolution Eddy Current Microscopy, Appl. Phys. Lett. 78, 383-385 (2001).
T. Ono et al., Magnetic Force and Optical Force Sensing with Ultrathin Silicon Resonator, Rev. Sci. Instrum. 74, 5141-5146, (2003).
P. J. McDonald et al., Stray Field Magnetic Resonance Imaging, Rep. Prog. Phys. 61, 1441-1493, (1998).
D. I. Hoult et al., The Quantum Origins of The Free Induction Decay Signal and Spin Noise, J. Magn. Reson. 148, 182-199, (2001).
J. A. Sidles et al., The Classical and Quantum Theory of Thermal Magnetic Noise, with Applications in Spintronics and Quantum Microscopy, Proc. IEEE 91, 799-816, (2003).
J. D. Hannay et al., Thermal Field Fluctuations in a Magnetic TIP/Implications for Magnetic Resonance Force Microscopy, J. Appl. Phys. 87, 6827-6829, (2000).
L. R. Narasimhan et al., Squid Microsusceptometry in Applied Magnetic Fields, IEEE Trans. Appl. Supercond. 9, 3503-3506, (1999).
G. Boero et al.,Hall Detection of Magnetic Resonance, Appl. Phys. Lett. 79, 1498-1500, (2001).
R. D. Black et al., A High-Temperature Superconducting Receiver for Nuclear Magnetic Resonance Microscopy, Science 259, 793-795, (1993).
S. Zhang et al., High-Sensitivity Ferromagnetic Resonance Measurements on Micrometer-Sized Samples, Appl. Phys. Lett. 70, 2756-2758, (1997).
F. Bloch, Nuclear Induction, Phys. Rev. 70, 460-474, (1946).
J. G. Kempf et al., Nanoscale Fourier-Transform Imaging with Magnetic Resonance Force Microscopy, Phys. Rev. Lett. 90, 087601-4 (2003).
E. E. Sigmund et al., Hole-Burning Diffusion Measurements in High Magnetic Field Gradients, J. Magn. Reson. 163, 99-104, (2003).
G. Binning, H. Rohrer, Surface Studies by Scanning Tunneling Microscopy, Phys. Rev. Lett. 49, 57-61, (1982).
G. Binning, et al., Atomic Force Microscope, Phys. Rev. Lett. 56, 930-934, (1986).
R. Wiesendanger, Observation of Vacuum Tunneling of Spin-Polarized Electrons with the Scanning Tunneling Microscope, Phys. Rev. Lett. 65, 247-251, (1990).
Y. Manassen et al., Direct Observation of the Precession of Individual Paramagnetic Spins on Oxidized Silicon Surfaces, Phys. Rev. Lett. 62, 2531-2535, (1989).
C. Durkan et al., Electronic Spin Detection in Molecules Using Scanning-Tunneling-Microscopy-Assisted Electron-Spin Resonance, Appl. Phys. Lett. 80, 458-460, (2002).
J. Sanny et al., Microwave Electron Spin Resonantor Spectrometer with Operation to 54 Mk in a Dilution Refrigerator,Rev. Sci. Instrum. 52, 539-541, (1981).
H. Mahdjour et al., High-Sensitivity Broadband Microwave Spectroscopy with Small Nonresonant Coils,Rev. Sci. Instrum., 57, 1100-1106, (1986).
D. L. Olson et al., High-Resolution Microcoil1H-NMR for Mass-Limited, Nanoliter-Volume Samples,Science270, 1967-1970, (1995).
D. A. Seeber et al., Triaxial Magnetic Field Gradient System for Microcoil Magnetic Resonance Imaging,Rev. Sci. Instrum. 71, 4263-4272 (2000).
L. Ciobanu et al., 3D MR Microscopy with Resolution 3.7um BY 3.3 um BY 3.3um,J. Magn. Reson. 158, 178-182, (2002).
M. Barbic et al., Electromagnetic Micromotor for Microfluidics Applications,Appl. Phys. Lett. 79:9, 1399-1401, (2001).
M. Barbic et al., Scanning Probe Electromagnetic Tweezers,Appl. Phys. Lett. 79:12, 1897-1899, (2001).
M. Barbic, Magnetic Wires in MEMS and Bio-Medical Applications,J. Magn. Mag. Mater. 249, 357-367, (2002).
M. Todorovic et al., Miniature High-Sensitivity Quartz Tuning Fork Alternating Gradient Magnetometry,Appl. Phys. Lett. 73, 3539-3597 (1998).
J. A. Rogers et al., Using Microcontact Printing to Fabricate Microcoils on Capillaries for High Resolution Proton Nuclear Magnetic Resonance on Nanoliter Volumes,Appl. Phys. Lett. 70, 2464-2466, (1997).
Y. J. Kim et al., Surface Micromachined Solenoid Inductors for High Frequency Applications,IEEE Trans. Compon. Pack. Manuf. C21, 26-33, (1998).
G. Boero et al., Fully Integrated Probe for Proton Nuclear Magnetic Resonance Magnetometry, Rev. Sci. Instrum. 72, 2764-2768, (2001).
M.M. Midzor et al., Imaging Mechanims of Force Detected FMR Microscopy,J. Appl. Phys. 87, 6493-6495, (2000).
H. J. Mamin et al., Subattonewton Force Detection at Millikelvin Temperatures,Appl. Phys. Lett

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Two-dimensional magnetic resonance tomographic microscopy does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Two-dimensional magnetic resonance tomographic microscopy, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Two-dimensional magnetic resonance tomographic microscopy will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3557656

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.