Two dimensional gel electorophoresis system

Chemistry: electrical and wave energy – Processes and products – Electrophoresis or electro-osmosis processes and electrolyte...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C204S618000, C204S616000, C204S467000

Reexamination Certificate

active

06398933

ABSTRACT:

TECHNICAL FIELD
The present invention relates to the field of electrophoretic separation of molecules, and, more particularly, to two-dimensional electrophoretic separations.
BACKGROUND OF THE INVENTION
Electrophoresis is the process of separating molecules on the basis of the molecule's migration through a gel in an applied electric field. In an electric field, a molecule will migrate towards the pole (cathode or anode) that carries a charge opposite to the net charge carried by the molecule. This net charge depends in part on the pH of the medium in which the molecule is migrating.
One common electrophoretic procedure is to establish solutions having different pH values at each end of an electric field, with a gradient range of pH in between. At a certain pH, the isoelectric point of a molecule is obtained and the molecule carries no net charge. As the molecule crosses the pH gradient, it reaches an isoelectric point and is thereafter immobile in the electric field. Therefore, this electrophoresis procedure separates molecules according to their different isoelectric points.
Electrophoresis in a polymeric gel, such as a polyacrylamide gel or an agarose gel, adds two advantages to an electrophoretic system. First, the polymeric gel stabilizes the electrophoretic system against convective disturbances. Second, the polymeric gel provides a porous passageway through which the molecules must travel. Since larger molecules will travel more slowly through the passageways than smaller molecules, use of a polymeric gel permits the separation of molecules by both molecular size and isoelectric point.
Thus, electrophoresis in a polymeric gel can also be used to separate molecules, such as RNA and DNA molecules, which all have the same isoelectric point. These groups of molecules will migrate through an electric field across a polymeric gel on the basis of molecular size. Molecules with different isoelectric points, such as proteins, can be denatured in a solution of detergent, such as sodium dodecyl sulfate (SDS). The SDS-covered proteins will have similar isoelectric points and will migrate through the gel on the basis of molecular size. The separation of DNA molecules on the basis of their molecular size is an important step in determining the nucleotide sequence of a DNA molecule.
A polymeric gel electrophoresis system is typically set up in the following way: A gel-forming solution is allowed to polymerize between two glass plates that are held apart on two sides by spacers. These spacers determine the thickness of the gel. Typically, sample wells are formed by inserting a comb-shaped mold into the liquid between the glass plates at one end and allowing the liquid to polymerize around the mold. Alternatively, the gel may be cast with a flat top and a pointed comb inserted between the plates so that the points are slightly imbedded in the gel. Small, fluid-tight areas between the points can be filled with a sample.
The top and bottom of the polymerized gel are placed in electrical contact with two separate buffer reservoirs. Macro-molecule samples are loaded into the sample wells via a sample-loading implement, such as a pipette, which is inserted between the two glass plates and the sample is injected into the well. To prevent sample mixing, it is advantageous to inject-the sample as close to the gel as possible. It is difficult to place the tip of the pipette or loading implement close to the gel because the pipette tip is often wider than the gel.
An electric field is set up across the gel, and the molecules begin to move into the gel and separate according to their size. The size-sorted molecules can be visualized in several ways. After electrophoresis, the gels can be bathed in a nucleotide-specific or protein-specific stain which renders the groups of size-sorted molecules visible to the eye. For greater resolution, the molecules can be radioactively labeled and the gel exposed to X-ray film. The developed X-ray film will indicate the migration positions of the labeled molecules.
Both vertical and horizontal assemblies are routinely used in gel electrophoresis. In a vertical apparatus, the sample wells are formed in the same plane as the gel and are loaded vertically. A horizontal gel will generally be open on its upper surface, and the sample wells are formed normal to the plane of the gel and also loaded vertically.
Two-dimensional electrophoresis is a useful technique for separating complex mixtures of molecules, often providing a much higher resolving power than that obtainable in one-dimension separations. The technique permits component mixtures of molecules to be separated according to two different sets of properties in succession, and lends itself to a variety of different combinations of separation parameters. One combination is separation based on charge followed by separation based on molecular weight, as discussed separately above. Another is separation in a gel of one concentration followed by separation in a gel of the same material but of another concentration. Two-dimensional separations have also been used to create a stepwise change in pH, to separate first in a homogeneous gel and then in a pore gradient gel, to separate in media containing first one molecule solubilizer and then another, or in media containing a solubilizer first at one concentration and then at another concentration, to separate first in a discontinuous buffer system and then in a continuous buffer system, and to separate first by isoelectric focusing and then by homogeneous or pore gradient electrophoresis. Combinations such as these can be used to separate many kinds of molecular components, including serum or cell proteins, bacterial proteins, non-histone chromatin proteins, ribosomal proteins, mixtures of ribonucleoproteins and ribosomal proteins, and nucleic acids.
The first dimension of a two-dimensional electrophoresis system is typically performed in an elongate rod-shaped gel having a diameter in the vicinity of 1.0 mm, with migration and separation occurring along the length of the rod. Once the solutes have been grouped into individual zones along the rod, the rod is placed along one edge of a slab gel and the electric current is imposed across the rod and slab in a direction perpendicular or otherwise transverse to the axis of the rod. This causes the migration of solutes from each zone of the rod into the slab gel, and the separation of solutes within each zone.
Difficulties in two-dimensional electrophoresis arise in the handling of the rod-shaped gel after the first dimension separation has occurred and in placing the gel in contact with the slab gel to prepare for the second dimension separation. The first dimension separation is generally performed while the rod gel is still in the tube in which it was cast. Once the separation in the tube has been performed, the rod is physically removed from the tube, then placed along the exposed edge of the slab gel. The extraction of the rod from the tube and the act of placing it along the slab gel edge require delicate handling, and even with the exercise of great care, the gel is often damaged and the solute zones are distorted or disturbed. Alignment and full contact of the rod with the slab gel are important for achieving both electrical continuity and unobstructed solute migration between the gels. Furthermore, considerable time is involved in the handling and placement of the rod, and errors can result in loss of data. Gel strips can be used as alternatives to the rod, but are susceptible to similar difficulties, opportunities for error, and a lack of reproducibility.
Many of these problems are eliminated by gel packages that contain both the elongated first dimension gel and the slab-shaped second dimension gel in a common planar arrangement that permits the two separations to be done in succession without any intervening insertion or removal of either gel. One such arrangement and method of use is disclosed in U.S. Pat. No. 4,874,490.
More recently, a new pre-cast gel structure and method has been described in U.S. Pat

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Two dimensional gel electorophoresis system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Two dimensional gel electorophoresis system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Two dimensional gel electorophoresis system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2955260

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.