Two-cycle engine fuel composition and method for using same

Fuel and related compositions – Liquid fuels – Organic nitrogen compound containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C044S434000, C508S562000

Reexamination Certificate

active

06346128

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to a two-cycle engine fuel composition and method for using same. More particularly, this invention is directed to a two-cycle engine fuel composition containing a two-cycle engine fuel together with a lubricant component and, as a fuel additive, a hydrocarbyl polyoxyalkylene aminoalcohol.
In general, the use of spark-ignited two-cycle (also referred to as two-stroke cycle or 2-stroke) internal combustion engines has steadily increased over the years. These engines have typically been employed in power lawn mowers and other power-operated garden equipment, power chain saws, pumps, electrical generators, marine outboard engines, snowmobiles, motorcycles and mopeds.
Several problems exist with the use of two-cycle engines. Among the problems that are associated with the two-stroke cycle engines are, for example, piston ring sticking, piston scuffing, rusting, lubrication related failure of connecting rod and main bearings and the accumulation of deposits such as carbon and varnish deposits on various parts of the engine, e.g., the combustion chamber and on the fuel intake and exhaust system of the engine. The existence of these problems can affect the performance of the engine. For example, piston ring sticking can lead to failure of the sealing function of piston rings which typically results in loss of cylinder compression. This is particularly damaging in two-stroke cycle engines because many of these engines depend on suction to draw the new fuel charge into the exhausted cylinder. Thus, ring sticking can lead to deterioration of engine performance and unnecessary consumption of fuel and/or lubricant.
The presence of deposits in the combustion chamber can often result in the following problems to the engine: (1) reduction in the operating efficiency of the engine; (2) inhibition in the heat transfer between the combustion chamber and the engine cooling system; and (3) reduction in the volume of the combustion zone which can cause a higher than design compression ratio in the engine. A knocking engine can also result from deposits forming and accumulating in the combustion chamber. A prolonged period of a knocking engine can result in stress fatigue and wear in engine components such as, for example, pistons, connecting rods and bearings.
In view of the foregoing problems associated with, for example, the formation and accumulation of deposits in the combustion chamber and fuel intake and exhaust systems of a two-cycle internal combustion engine, efforts have been made to develop a fuel composition by mixing a fuel and lubricant component together with a third component lubricant additive. Illustrative of these third component lubricant additives are those disclosed in U.S. Pat. Nos. 5,498,353 and 5,888,948.
SUMMARY OF THE INVENTION
In accordance with the present invention, a two-cycle engine fuel composition is provided which comprises (a) a major amount of a two-cycle engine fuel; (b) a lubricant component; and, (c) a two-cycle engine fuel combustion deposit-inhibiting amount of at least one hydrocarbyl polyoxyalkylene aminoalcohol of the general formula
wherein R
1
is an alkyl, an alicyclic or an alkylalicyclic radical having from about 4 to about 30 carbon atoms or an alkylaryl where the alkyl group is from about 4 to about 30 carbon atoms; x is an integer from 0 to about 5, y is an integer from 1 to about 49, z is an integer from 1 to about 49 and the sum of x+y+z is equal to 3 to about 50; R
2
and R
3
each is different and is an alkyl group of from 1 to 4 carbon atoms and each oxyalkylene radical can be any combination of repeating oxyalkylene units to form random or block copolymers; R
4
is the same as R
2
or R
3
; R
5
is hydrogen or
where R
7
is hydrogen or an alkyl group of from 1 to 5 carbon atoms; and R
6
is hydrogen or an alkyl group of from 1 to 5 carbon atoms.
It shall be understood herein that mixed oxyalkylene groups constituting the polyoxyalkylene chain in the foregoing general formula may contain random or block sequencing.
Further in accordance with this invention, a method for inhibiting the deposition of fuel combustion deposits in a two-cycle engine is provided which comprises operating the two-cycle engine employing as the fuel therefore a two-cycle engine fuel composition which comprises (a) a major amount of a two-cycle engine fuel; (b) a lubricant component; and, (c) a two-cycle engine fuel combustion deposit-inhibiting amount of at least one hydrocarbyl polyoxyalkylene aminoalcohol of the general formula
wherein R
1
, R
2
, R
3
, R
4
, R
5
, R
6
, x, y and z have the aforestated meanings.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The two-cycle engine fuel composition of this invention will inhibit the deposition of fuel combustion deposits in the combustion chamber and intake valves and exhaust system of a two-cycle engine. In general, the fuel composition will contain (a) a major amount of a two-cycle engine fuel; (b) a lubricant component; and, (c) an effective two-cycle engine fuel combustion deposit-inhibiting amount of at least one hydrocarbyl polyoxyalkylene aminoalcohol.
Suitable two-cycle engine fuels for use herein, i.e., gasoline base stocks, ordinarily contain a mixture of hydrocarbons boiling in the gasoline boiling range of from about 90° F. to about 370° F. This fuel can consist of straight or branched chain paraffins, cycloparaffins, olefins, aromatic hydrocarbons, or mixtures thereof. The fuel can be derived from among others, straight run naphtha, polymer gasoline, natural gasoline, or from catalytically cracked or thermally cracked hydrocarbons and catalytically reformed stock. Generally, the composition and octane level of the fuel are not critical and any conventional two-cycle engine fuel can be employed herein.
The lubricant component employed herein can be any lubricating oil used in a two-cycle engine. Suitable lubricating oils for use herein can be any natural oil, synthetic oil or mixtures thereof. Useful natural oils include mineral lubricating oils such as, for example, liquid petroleum oils, solvent-treated or acid-treated mineral lubricating oils of the paraffinic, naphthenic or mixed paraffinic-naphthenic types, oils derived from coal or shale and the like.
Useful synthetic lubricating oils include hydrocarbon oils and halo-substituted hydrocarbon oils such as polymerized and interpolymerized olefins, e.g., polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated polybutylenes, etc.; poly(1-hexenes), poly(1-octenes), poly(1-decenes), and the like and mixtures thereof; alkylbenzenes such as dodecylbenzene, tetrade cylbenzenes, dinonylbenzenes, di(2-ethylhexyl)-benzenes, and the like; polyphenyls such as biphenyls, terphenyls, alkylated polyphenyls, and the like; alkylated diphenyl ethers and alkylated diphenyl sulfides and the derivative, analogs and homologs thereof and the like.
Other useful synthetic lubricating oils include oils made by polymerizing olefins of less than 5 carbon atoms such as ethylene, propylene, butylenes, isobutene, pentene, and mixtures thereof. Methods of preparing such polymer oils are well known to those skilled in the art.
Further useful synthetic oils include alkylene oxide polymers, i.e., homopolymers, interpolymers, and derivatives thereof where the terminal hydroxyl groups have been modified by esterification or etherification. These oils are exemplified by the oils prepared through polymerization of ethylene oxide or propylene oxide, the alkyl and amyl ethers of these polyoxyalkylene polymers (e.g., methyl poly propylene glycol ether having an average molecular weight of 1,000, diphenyl ether of polyethylene glycol having a molecular weight of 500-1000, diethyl ether of polypropylene glycol having a molecular weight of 1,000-1,500, etc.) or mono- and polycarboxylic esters thereof such as, for example, the acetic esters, mixed C
3
-C
8
fatty acid esters, or the C
13
Oxo acid diester of tetraethylene glycol.
Yet further useful synthetic lubricating oils include the esters of dicarboxylic acids e.g

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Two-cycle engine fuel composition and method for using same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Two-cycle engine fuel composition and method for using same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Two-cycle engine fuel composition and method for using same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2963767

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.