Prime-mover dynamo plants – Turbogenerators
Reexamination Certificate
1999-05-10
2001-05-29
Enad, Elvin (Department: 2834)
Prime-mover dynamo plants
Turbogenerators
C290S002000, C290S00400D, C290S04000F, C290S04000F
Reexamination Certificate
active
06239504
ABSTRACT:
BACKGROUND OF THE INVENTION
Field of the Invention
The invention pertains to a turbine guide and a method for regulating a load cycle process of a turbine, particularly a steam turbine, whereby a maximum permissible material stress due to the load cycle process is taken into account.
In the article “Digital Computer Control System for Turbine Start-Up” by N. Honda, Fn. Kavano, J. Matsumura in Hitachi Review, Vol. 27, No. 7, 1978, a computer system as well as a method for carrying out an accelerated start-up of a steam turbine is described. The start-up process is regulated here by thermal stresses as controlled variables, which are precalculated and serve as control variables for increasing a turbine rotation speed and a coupling of the turbine on to a generator for load transmission. The start-up process is divided into many small times stages, whereby for each time stage the temperature division is solved along the turbine shaft by solving a partial differential equation. If the thermal stresses calculated therefrom lie within a permissible framework, then a corresponding signal is transmitted on to a turbine speed regulating unit or a power regulating unit, depending on whether the turbine is in an acceleration phase in which the rotation speed of the shaft is being increased, or whether the turbine is in a power coupling phase in which the turbine is connected on to the generator and brought up to the desired power capacity. The method as well as the corresponding computer system serve the purpose of achieving the shortest possible start-up time, taking into consideration the permissible material stresses for a certain starting frequency.
In the article “Temperature Guide For Power Plant Turbines” by P. Martin et al. in BWK, Vol. 36, No. 12, 1984, a mechanism is described by which the monitoring of the stress of selected turbine parts takes place. With this mechanism a regulation of each starting sequence takes place, so that the material fatigue over the expected operation period of the turbine remains below a critical value. It is however assumed that a turbine during its period of application goes through about 4000 start-up sequences, out of which about 3000 are hot starts, 700 are warm starts and 300 are cold starts. For the regulation, the target capacity as well as the rated power capacity transient are pre-given. Taking into consideration the measured rotation speed, the heat transfers of steam on to the rotor material are determined. From that the temperature distribution on the rotor is determined and from that again a stress value as a superimposition of thermal and mechanical stresses can be determined. From the total stress within the rotor as well as the valve housing, percentages of the degree of fatigue are calculated from the time position stress and expansion cycle stress and then added up to the total fatigue degree, which is recorded daily. The calculated stress values serve the purpose of controlling the set-up process, whereby the rated temperature transients are pre-given as limiting values.
In the article “Turbine Guide Calculators For Thermal Monitoring Of Steam Turbines” by E. Geller and F. Zerrmayr in Siemens-Energietechnik 4, issue 2, 1982, a turbine guide calculator is described, in which the start-up speed and the power variation speed is controlled under consideration of the material fatigue and simultaneously the material fatigue caused is determined. As a measurement for heat stress one takes the difference between an average temperature T
m
and the surface temperature T
1
, of a component. For adapting the regulation to different start-up and take-off sequences and for power variations of fixed-pressure operated turbines, three different regulating modes are foreseen, which correspond to a fast, a medium and a slow variation. Depending on the mode, a maximum permissible temperature difference (T
m
, T
1
) is pre-given as a function of the average temperature T
m
. The actual temperature difference in each case is determined by the turbine guide calculator and from that the free amount for maximum permissible temperature difference is calculated. Apart from the calculation of the momentary free amount, a preview of the expected course of the free amount is also carried out. From both of these values a guiding value is formed with the help of which the start-up and stress speed can be changed in advance by the rated value guide for the speed and capacity, and thus an adaptation to the dynamic plant behavior can be achieved. Along with the operation for regulating the start-up or starting sequence as well as a power variation sequence, the life-span consumption from expansion cycle fatigue is calculated, so that one can determine in a timely manner and beforehand, when the time point would be reached at which a precise inspection of the turbine would become necessary. The start-up mode “normal” corresponds exactly to a start-up mode by which 4000 load cycles of the turbine are possible in a safe manner. The start-up mode “fast” leads to a higher stress corresponding to about 800 possible load cycles and the start-up mode “slow” leads to a lower material fatigue, so that in this case about 10000 load cycles are possible safely.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a turbine guide and a method for regulating a load cycle process of a turbine which overcome the above-mentioned disadvantages of the prior art devices and methods of this general type, by which one can achieve a flexible variation in the operating condition of the turbine conforming to the operational specifications for generating electrical energy, taking into account the maximum permissible material fatigue. It is also the task of the invention to present a suitable method for regulating a load cycle process of a turbine.
With the foregoing and other objects in view there is provided, in accordance with the invention, a turbine guide for regulating a load cycle process of a turbine, including: a limiting unit receiving a variable for a variable presetting of a time duration T
v
of a load cycle process of a turbine, the limiting unit determining a turbine guide variable for carrying out the load cycle process in the time duration T
v
in consideration of a maximum permissible material stress of the turbine.
The advantage of a turbine guide as per the invention is the indirect or direct pre-giving of the desired time for start-up and starting and the power variation of the turbo set under consideration of physical limiting values.
For feeding a time variable, an input unit/selection unit can be foreseen. To this one can feed a variable pre-given value of the time duration for the load cycle process, this variable can already be the time duration itself. For carrying out the load cycle process, preferably a flexible pre-settable time duration is determined individually for each load cycle process. The time duration can be freely selected, i.e. it can accept any physically meaningful values. It can be set in a stageless manner for each physical and operationally meaningful value. Thus, from the point of view of the operator, depending on the requirement, especially with respect to the required supply of electrical energy, the duration for a load cycle from an initial condition to a target condition can be pre-given. For regulation of the load cycle process, which could be a start-up or starting process as well as a power variation process, a turbine guide variable is determined in the limiting unit by pre-giving the time duration; this variable is determined as a function of the time in the time duration between leaving the initial condition and reaching the target condition. Besides the pre-selected time duration (start-up time, starting time, load variation time), the turbine guide variable is also dependent on the initial temperature at the point of time of the initial condition and the final temperature at the point of time of the target condition, the geometry of the components, the material used, the steam condition and the temperat
Gobrecht Edwin
Langbein Rolf
Enad Elvin
Greenberg Laurence A.
Lerner Herbert L.
Siemens Aktiengesellschaft
Stemer Werner H.
LandOfFree
Turbine guide and a method for regulating a load cycle... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Turbine guide and a method for regulating a load cycle..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Turbine guide and a method for regulating a load cycle... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2496066