Turbine diaphragm support system

Rotary kinetic fluid motors or pumps – Working fluid passage or distributing means associated with... – Vane or deflector

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06325596

ABSTRACT:

This invention relates to turbomachinery and, specifically, to a system for supporting a split, annular diaphragm in the steam path of a steam turbine.
BACKGROUND OF THE INVENTION
Turbomachines generally comprise stationary and rotating parts defining a flow path for fluid through the turbine. Turbomachines also include an outer fluid tight casing called an outer shell from which a number of stationary parts, including split, annular diaphragms (that mount the fixed nozzles between the stages of the turbine), generally depend radially inwardly. In some prior arrangements, the diaphragms are positioned by radial keys (at the 6 and 12 o'clock positions) and are supported by support bars on opposite sides (in 9 and 3 o'clock positions) of the diaphragms.
The outer shell or casing may also be split along a horizontal joint so that the turbine shell comprises an upper half and a lower half. In building a turbomachine, certain stationary parts are mounted in the lower half shell whereas other stationary parts are mounted in the upper half shell while the two mating components are apart. The two halves are then assembled along a horizontal joint after the rotor has been mounted in the lower half.
As already noted, the diaphragms may likewise be split along a horizontal joint and comprise upper and lower diaphragm halves. The lower diaphragm halves are each mounted in the lower shell, and after rotor installation, the upper diaphragm halves are bolted to the lower diaphragm halves. It is necessary, however, to align the diaphragms with the rotor to insure a uniform and desired radial gap between them.
Traditionally, large diaphragms have been supported radially by pads bolted to the sides of the lower half diaphragm, and supported by the lower turbine shell. The current design uses a rectangular slot and bolts to fasten the diaphragm support or pad to the diaphragm. With higher turbine power density designs in fixed outer shells, however, the available space for current supporting systems has become problematic. Supporting blocks or pads, hold down bolts, sealing keys and lifting holes, etc. all vie for the limited space.
In addition, with current designs, alignment of the diaphragms can only be achieved by removing the rotor from the shell. There is thus a need for simplified diaphragm construction that conserves space, reduces alignment time and errors, and also minimizes crane usage for rotor removal.
BRIEF SUMMARY OF THE INVENTION
This invention provides a new system for supporting steam turbine diaphragms radially within the steam path. It also provides diaphragm alignment capability without removing the rotor from the casing. The new support system for turbine diaphragms includes a support bar that incorporates a dovetail for mating engagement with a dovetail slot in the outer ring of the lower diaphragm half that carries the load and maintains radial position. This arrangement is provided on both sides of the diaphragm.
Specifically, each support bar in accordance with the exemplary embodiment of the invention includes a vertical body portion with an outwardly directed support flange at an upper end thereof, and an inwardly directed dovetail adjacent a lower end thereof. The supporting flange is adapted to engage a shoulder of the lower casing half via a plurality of adjustment shims, a shim pack clamping block, and a shim pack clamping bolt. The shims are employed to align the diaphragm as necessary, relative to the rotor. The dovetail is engaged with, or seated within, a mating dovetail slot formed in the diaphragm lower half, adjacent the split line (i.e., the interface between the upper and lower diaphragm halves).
It will be appreciated that because the upper diaphragm halves are bolted to the lower diaphragm halves (after rotor installation), the support bars carry the full weight of the diaphragms.
A set screw approximately mid-way along the support bar is used to stabilize and align the lower diaphragm half, while an additional set screw extends through the dovetail itself, bearing on the base of the dovetail slot, thus enabling the dovetail joint to be securely locked.
The above described dovetail design eliminates the bolts and drilled holes in the outer ring of the diaphragm, and provides additional advantages with respect to design simplicity, flexibility, quicker and more accurate alignment, and decreased maintenance. Moreover, the design permits direct alignment of turbine rotors with the stationary components (diaphragms) in the turbine shell, thus avoiding alignment errors caused by translating data from other alignment techniques.
In its broader aspects, therefore, the present invention relates to a diaphragm support bar for a turbine diaphragm comprising a vertical body portion having a support flange extending substantially perpendicularly from an upper end of the vertical body portion; and a dovetail extending substantially perpendicularly from a lower end of the vertical body portion.


REFERENCES:
patent: 4190961 (1980-03-01), James et al.
patent: 4204803 (1980-05-01), Leger et al.
patent: 4616975 (1986-10-01), Duncan
patent: 6065754 (2000-05-01), Cromer et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Turbine diaphragm support system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Turbine diaphragm support system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Turbine diaphragm support system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2593035

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.