Turbine blade arrangement

Fluid reaction surfaces (i.e. – impellers) – Rotor having flow confining or deflecting web – shroud or... – Axially extending shroud ring or casing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C416S19300A

Reexamination Certificate

active

06726452

ABSTRACT:

FIELD OF THE INVENTION
The invention generally relates to a turbine blade arrangement with moving blades.
BACKGROUND OF THE INVENTION
To increase the efficiency or the turbine power output and therefore the effective cross section of turbines, conventionally the blade profiles of the turbine moving blades are lengthened, in order thereby to achieve a better utilization of the hot working fluid flowing past or more power output. However, this lengthening of the blade profile is limited by several parameters.
In particular, the lengthened blade profiles and the consequently increased moved mass exert a high load on a hub region of the turbine disk due to the centrifugal force which is applied. Attempts are made to counteract this by increasing the carrying surface in the hub region by way of an axial lengthening of the disk. However, this lengthening possibility is limited. Enlarged blade profiles not only subject the hub to higher load, but also the region in which the turbine blades are inserted with their roots into grooves of the outer circumference of the turbine disk. A lengthening of the blade profiles could also take place in the direction of the disk hub. As a result of this, however, the distance between the grooves of the outer circumference would become smaller and therefore the disk region between them, and, in particular, the groove regions nearest the hub, designated as the root cut, would be subjected to even greater load. At the present time, however, this load is virtually at its maximum possible and can almost no longer be increased, without risking damage to the turbine disk.
SUMMARY OF THE INVENTION
An object of an embodiment of the present invention is, therefore, to provide a turbine blade arrangement which makes it possible to lengthen the moving blade profiles, without an increase or with a merely insignificant increase in the local loads on grooves of the turbine disk or on moving blade roots.
The object may be achieved in at least a part of the platform is connected to the turbine disk by way of a holding device independent of the blade root. By the platform being connected to the turbine disk, at least some of the centrifugal force load caused by the moving blades rotating together with the turbine disk is transferred by the holding device to the turbine disk, to regions located between the root regions. At least some of the centrifugal force load therefore does not have to be absorbed by the blade root or the groove into which the root is inserted and does not have to be transferred to the turbine disk. As a result of load redistribution, therefore, the load is introduced more uniformly into the turbine disk, and the roots of the moving blades and the grooves into which the roots are pushed are relieved of stress excesses which are detrimental to the strength of the regions. This is important particularly in the region of the root cut, imagined as a circle around the hub and running through the lowest groove regions, since the highest stress excesses occur in the lowest groove regions.
Moreover, it is possible for transitional regions between platform and blade to be made appreciably less thick and massive, since the lever forces occurring in this region in a conventional blade due to a projecting platform fastened to the blade are absorbed completely owing to the use of the holding device. The narrow design results, in addition, in a further weight saving. The profiles of the moving blades can therefore be lengthened without an increase or, depending on the amount of lengthening, with a merely insignificant increase in the local loads on disk grooves or moving blade roots. Thus, the efficiency of the turbine can be increased without any adverse influence on the strength of the disk and of the blades.
If the platform part connected to the turbine disk by way of the holding device is produced separately from the moving blade, the holding device absorbs the entire centrifugal force load caused by the platform part. The groove is therefore no longer subjected to load. By the masses of the platform part and of the moving blades, with blade profile and blade root, being separated completely, the centrifugal forces which take effect are absorbed separately by virtue of the respective connection to the turbine disk. The holding device and root therefore have to transfer in each case only a relatively small part of the total centrifugal force load. In the region in which the platform part is separated from the blade, that is to say at edges, it is possible to have a less massive construction of the blade and platform part than in the case of a one-part blade not additionally connected to the turbine disk, since the weight of the platform does not also have to be carried in addition. In this way, therefore, the total weight of the blade is reduced, on the one hand, by the platform being separated and, moreover, by the less massive construction at the edges. The root and the groove thus have to carry even less weight. Moreover, the blades, with the blade profiles, and the separately fastened platform parts are not so easily set in vibration which is critical for the blade fastening, or the vibrations can be damped more easily than in the case of the one-part construction of the blade. Furthermore, the blade and the platform part can be produced separately at a substantially lower outlay. In particular, where the casting of the blade is concerned, the production of the casting mold and exact casting execution are simplified, since the turbine blade without the integrally formed platform virtually no longer has any projecting integral part. The isolated platform part has a simple geometric shape, in general is plate-shaped, and can therefore be produced at a low outlay. Moreover, different materials can be used for the blade and the platform part. As a result, if a relatively light alloy is used, weight and, if appropriate, material costs and machining costs can be saved.
A uniform distribution of the acting centrifugal forces over the circumference of the turbine disk is achieved in that a one-piece platform part is used as a platform part of two adjacent moving blades and the holding device is arranged approximately in the middle between the two adjacent moving blades. The stress peaks, which occur, in particular, below the lowest toothing of the groove due to the high centrifugal force load, are thereby greatly reduced. Since a one-piece platform part is connected to the turbine disk between two moving blades, the number of required platform parts and holding devices for the platform parts is lowered respectively to one platform part and one holding device between two adjacent moving blades in each case.
The largest possible surface fraction of the platform part is achieved in that the platform part is inserted between the end regions of two adjacent blade profiles in such a way that it replaces the platforms virtually completely. Almost the entire platform masses are therefore carried by the holding device and do not exert load either on the roots or on the grooves into which the roots are pushed. An optimum mass distribution to the root and the holding device is thus achieved. In the separation regions in which the platform part and the blade are adjacent, a large amount of material and therefore weight is saved, as compared with a one-part construction, since it is no longer necessary to absorb the lever forces occurring due to the large platform part. A great material saving is also made possible by the fact that the edges of the platform part which are adjacent to the blade profiles are shaped in adaptation to the curvature of the blade profiles.
Moreover, production is simplified, since, in this case, the blade has a slender shape, even in the transitional region between the root and profile, this shape being substantially simpler to cast. Stable and at the same time flexible adaption of the holding device to the platform part and to the turbine disk is afforded in that the holding device consists of at least one pairing of holding partners engaging on

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Turbine blade arrangement does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Turbine blade arrangement, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Turbine blade arrangement will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3274468

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.