Coherent light generators – Particular resonant cavity – Specified cavity component
Reexamination Certificate
2002-03-19
2004-10-19
Leung, Quyen (Department: 2828)
Coherent light generators
Particular resonant cavity
Specified cavity component
Reexamination Certificate
active
06807217
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to laser tuning.
In the optical communication industry there is a need for testing optical components and amplifiers with lasers that can be tuned in wavelength continuously without mode hopping. To perform these tests Littman cavities can be used as external cavities to allow single-mode tuning of the laser. The geometry of these cavities is known, see e.g.: Liu and Littman, “Novel geometry for single-mode scanning of tunable lasers”, Optical Society of America, 1981, which article is incorporated herein by reference. The advantage of the Littman cavity is that it is possible to tune the wavelength and the optical length of the cavity at the same time by changing only one parameter of the geometry, i.e. the tuning element.
Examples of tunable lasers, in particular based on the Littman geometry, can be found e.g. in U.S. Pat. No. 5,867,512, DE-A-19509922, Wenz H. et al: “Continuously Tunable Diode Laser” in ‘Laser und Optoelekronik’ (Fachverlag GmbH, Stuttgart, D E, Vol.28 No.1, p.58-62, Feb. 1, 1996, XP000775842, ISSN: 0722-9003), Wandt D. et al: “Continuously Tunable External-Cavity Diode Laser with a Double-Grating Arrangement” (Optics Letter, Optical Society of America, Washington, US, vol.22, no.6, Mar. 15, 1997, pages 390-392, XP000690335, ISSN: 0146-9592), DE-A-19832750, EP-A-938171, JP-A-05 267768, or U.S. Pat. No. 5,319,668.
However, the Littman geometry is extremely sensible to deviations of the real geometry with respect to the perfect Littman configuration. This does impose severe requirements on the rotation mount for the tuning element of the Littman cavity. Smallest errors in the positioning of the pivot axis of the tuning element reduce the full feedback tuning range of a tuning element of the cavity heavily. This requires costly precision when manufacturing and maintaining such tunable lasers.
SUMMARY OF THE INVENTION
Therefore, it is an object of the invention to provide improved tuning of a laser. The object is solved by the independent claims.
An advantage of the present invention is the provision of a tunable laser which autonomously and easily compensates for deviations, e.g. an inclination of the real position of the pivot axis of the tuning element with respect to the theoretical perfect position of the pivot axis, so that over the tuning range of the tuning element it is possible to have the full feedback of the tuning element. At least, the compensation is sufficient to keep the feedback power of the tuning element at least near its maximum within a predetermined tuning range of the tuning element. The compensation is done by moving the dispersion element, preferably along a predetermined path, corresponding with the rotation of the tuning element. Therefore, method and apparatus for tuning of lasers according to the present invention avoid the aforementioned problems of the prior art and provide a tunable laser with a wide full feedback tuning range without heavy duties to the precision when manufacturing and maintaining such laser.
In a preferred embodiment of the present invention the moving of the dispersion element is done simultaneously with the rotation of the tuning element. This achieves an online correction, so that always the correct position of the dispersion element for the full feedback of the tuning element is guaranteed.
In another preferred embodiment of the invention the correction is done by moving the dispersion element by tilting it by a predetermined angle about a predetermined tilting axis. This way of correction can be easily implemented in the inventive apparatus, e.g. by using a bimorph type piezo-electric element that can precisely move the respective tuning element of the laser.
In yet another preferred embodiment of the invention the correction is done by a dispersion element which is a diffraction grating and in which the tilting axis is at least not parallel, more preferred perpendicular, to the axes of the rules of the grating. This positioning serves for maximum efficiency of the inventive method and apparatus.
In another preferred example of the invention the method further comprises steps for at least approximately evaluating a function which determines the tilting angle of the dispersion element for keeping the feedback power of the tuning element at least near its maximum within a predetermined tuning range of the tuning element per rotating angle of the tuning element. This calculation is done by: step a: rotating the tuning element to tune the laser to one wavelength, step b: tilting the dispersion element until the feedback power is substantially at its maximum, repeating steps a and b at least one time at another wavelength, using the at least two values of tilting angle per rotating angle to evaluate an approximation of the function which determines the tilting angle per rotating angle. This can be done fast and easy so that a quick adjustment of the apparatus for full feedback of the tuning element is achieved.
After performing the above described determination it is preferred to move the dispersion element according to the approximation function before or while rotating the tuning element.
Other preferred embodiments are shown by the dependent claims.
It is clear that the invention can be partly embodied or supported by one or more suitable software programs, which can be stored on or otherwise provided by any kind of data carrier, and which might be executed in or by any suitable data processing unit.
REFERENCES:
patent: 4229710 (1980-10-01), Shoshan
patent: 5319668 (1994-06-01), Luecke
patent: 5862162 (1999-01-01), Maeda
patent: 5867512 (1999-02-01), Sacher
patent: 6304586 (2001-10-01), Pease et al.
patent: 6366592 (2002-04-01), Flanders
patent: 2002/0126345 (2002-09-01), Green et al.
patent: 2002/0181517 (2002-12-01), Nebendahl
patent: XP-000775842 (1996-02-01), None
patent: 195 09 922 (1996-09-01), None
patent: 198 32 750 (2000-02-01), None
Classen, L., Examiner. European Search Report, Application No. EP 01 11 3372, dated Dec. 18, 2002.
Wandt, D. et al. “Continuously Tunable External-Cavity Diode Laser With a Double-Grating Arrangement,” Optics Letters, Optical Society of America, XP 000690335, vol. 22, No. 6, Washington, U.S., Mar. 15, 1997, pp. 390-392.
LandOfFree
Tuning a laser does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Tuning a laser, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tuning a laser will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3326806