Tunable multicolor electroluminescent device

Electric lamp and discharge devices: systems – Plural power supplies – Plural cathode and/or anode load device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C313S506000

Reexamination Certificate

active

06605904

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a multi-color electroluminescent device including multi-component conductive polymer layers capable of voltage-dependent, tunable multicolor electroluminescent emissions.
BACKGROUND OF THE INVENTION
Conjugated polymers in their native state are molecular semiconductors which are of growing interest in optoelectronic and electronic devices, including light-emitting diodes (LEDs) (Friend et al., 1999; Kraft et al., 1998; Tarkka et al., 1996; Eichen et al., 1998; Burn et al., 1993; Zhang et al., 1998(a)), lasers (Tessler et al., 1996; Hide et al., 1996; Wegmann et al., 1998), photovoltaic cells (Antoniadis et al., 1994(a); Halls et al., 1995), xerographic imaging photoreceptors (Zhang et al., 1996; Zhang et al., 1997(a); Osaheni et al., 1994(a); Osaheni et al., 1994(b); Abkowitz et al., 1992; Antoniadis et al., 1993), and thin film transistors (Garnier, 1998). In the case of polymer LEDs, synthetic manipulation of macromolecular architecture has made available diverse light-emitting conjugated polymers from which LEDs of various colors have been fabricated and are now being optimized by a variety of device engineering strategies. In efforts to design next generation electroluminescent (EL) materials with significantly improved EL efficiency and to explore novel phenomena, i.e., multicolor emission (Berggren et al., 1994; Jenekhe et al., 1997; Zhang et al., 1998(b); Hamaguchi et al., 1996; Wang et al., 1997), exciplex emission (Jenekhe et al., 1994; Osaheni et al., 1994(c); Gebler et al., 1997; Gebler et al., 1998), and photon harvesting/energy transfer (Yang et al., 1994; Lee et al., 1996; Tasch et al., 1997), not feasible in conjugated homopolymers, multicomponent conjugated polymer systems, which include multilayered thin films (Jenekhe et al., 1997; Zhang et al., 1998(b); Hamaguchi et al., 1996; Wang et al., 1997; Fou et al., 1996; Onitsuka et al., 1996; Strukelj et al., 1995; Li et al., 1997; Greenham et al., 1993; O'Brien et al., 1996; Yamamoto et al., 1996; Cui et al., 1999; Dailey et al., 1998), blends (Berggren et al., 1994; Yang et al., 1994; Lee et al., 1996; Tasch et al., 1997; Chen et al., 1997(a); Jenekhe et al., 1996; Yu et al., 1995; Zhang et al., 1997(b)), and block copolymers (Chen et al., 1996; Wagaman et al., 1997; Chen et al., 1997(b); Chen et al., 1997(c)), are of increasing interest.
In the simplest polymer LED, an EL polymer thin film, such as poly(p-phenylene vinylene) (PPV), is sandwiched between two electrodes of different work functions as schematically shown in
FIG. 1
a.
Such a single-layer polymer LED is generally inefficient for two principal reasons. First, there is poor charge injection at one or both metal/polymer interfaces due to the inability to simultaneously match the anode work function (&PHgr;
a
) to the highest occupied molecular orbital (HOMO) and the cathode work function (&PHgr;
c
) to the lowest unoccupied molecular orbital (LUMO) of the polymer. The energy barriers to hole and electron injection at the anode and cathode are respectively &Dgr;E
h
(=&PHgr;
a
−IP) and &Dgr;E
e
(=&PHgr;
c
−EA) where IP is the ionization potential and EA is the electron affinity of the polymer (FIG.
1
). Secondly, there is a huge disparity between hole and electron mobilities in semiconducting polymers (Antoniadis et al., 1994(b); Blom et al., 1996; Lin et al., 1996(a); Lin et al., 1996(b)), thus precluding balanced charge transport in the devices. Commonly studied EL polymers such as PPV (Friend et al., 1999), polyphenylenes (Leising et al., 1996; Leising et al., 1997), polyfluorenes (Grice et al., 1998; Pei et al., 1996; Lee et al., 1999), polythiophenes (Berggren et al., 1994) and their derivatives are p-type (hole transport) polymers which have hole mobilities that are orders of magnitude larger than electron mobilities, relatively small bafflers to hole injection from indium-tin-oxide (ITO, &PHgr;
a
~4.7-4.8 eV) (Kugler et al., 1997), and very large bafflers to electron injection from air stable cathodes such as aluminum (&PHgr;
c
~4.0-4.3 eV) (Weast et al., 1987-1988).
Two-layer polymer/polymer heterojunction LEDs have been found dramatically to improve EL efficiency and brightness (Jenekhe et al., 1997; Zhang et al., 1998(b); Strukelj et al., 1995; Li et al., 1997; Greenham et al., 1993; O'Brien et al., 1996; Yamamoto et al., 1996; Cui et al., 1999; Dailey et al., 1998), compared to the one-layer devices (FIG.
1
). This is consistent with findings in multilayered organic/organic diodes (Tang et al., 1987).
n-Type (electron transport) polymers used in such two-layer heterojunction LEDs are thought to improve device efficiency through their high electron affinities which reduce the barrier to electron injection at the cathode/polymer interface (Greenham et al., 1993). An increasing part of current EL materials research effort is thus being directed to the design and synthesis of n-type polymers with improved properties (Strukelj et al., 1995; Li et al., 1997; Greenham et al., 1993; O'Brien et al., 1996; Yamamoto et al., 1996; Cui et al., 1999; Dailey et al., 1998). Both non-conjugated polymers, such as the oxadiazole-containing side-chain polymers (Strukelj et al., 1995; Li et al., 1997), and &pgr;-conjugated polymers such as polycyanoterephthalylidenes (CN-PPVs) (Greenham et al., 1993), polyphenylquinoxalines (O'Brien et al., 1996; Yamamoto et al., 1996; Cui et al., 1999), polypyridines (Dailey et al., 1998), and polyquinolines (Jenekhe et al., 1997) have been reported as electron transport layers in two-layer heterojunction LEDs. What is currently lacking, however, is understanding of the roles of the electronic structures and sizes of the polymer/polymer interfaces in such two-layer heterojunction LEDs. In contrast, extensive studies of metal/polymer interfaces (Salaneck et al., 1996; Kugler et al., 1999; Gao, 1999) in LEDs have provided knowledge of their general features and properties in relation to device performance. For example, the indium-tin-oxide (ITO)/PPV interface is believed to be quasi-ohmic, if not ohmic, for hole injection (Antoniadis et al., 1994(c)), whereas the cathode (Al, Ca, Mg)/PPV interface injects electrons by tunneling and/or other complex processes (Parker et al., 1994). Al/PPV interface is known to exhibit Schottky barrier characteristics, leading to photovoltaic properties (Antoniadis et al., 1994(a)).
In addition to their possible important roles in the two-layer heterojunction LEDs, polymer/polymer interfaces can also play a critical role in even single-layer LEDs if the polymer layer consists of a phase separated blend (Berggren et al., 1994) or a microphase separated block copolymer. More generally, polymer/polymer interfaces mediate a variety of photophysical and charge transfer processes in multicomponent conjugated polymer systems exemplified by efficient energy transfer in binary nanophase separated blends (Yang et al., 1994; Lee et al., 1996; Tasch et al., 1997) and block copolymers (Chen et al., 1996), exciplex formation (Jenekhe et al., 1994; Osaheni et al., 1994(c); Gebler et al., 1997; Gebler et al., 1998) in bilayers and blends, ground-state electron transfer in binary blends (Chen et al., 1997(a)), photoinduced electron transfer in binary blends (Jenekhe et al., 1996), and tunable multicolor electroluminescence in bilayers (Jenekhe et al., 1997; Zhang et al., 1998(b); Hamaguchi et al., 1996; Wang et al., 1997) and blends (Berggren et al., 1994). The coupling of finite size effects to the electronic structure and properties of polymer/polymer interfaces in such multicomponent polymers has been suggested from observed multicolor EL emission from two-layer heterojunctions (Jenekhe et al., 1997). Conjugated polymer bilayer heterojunctions have also been extensively studied as rectifying junctions (charge trapping electrodes, charge storage) in electrochemical experiments (Torres et al., 1990; Hillman et al., 1990).
The prior art has failed to define criteria for structural assembly and selection of comp

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Tunable multicolor electroluminescent device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Tunable multicolor electroluminescent device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tunable multicolor electroluminescent device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3095562

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.