Tumor necrosis factor receptor 2

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S023100, C536S024300, C536S024310, C536S024330, C435S006120, C435S091100, C435S091200

Reexamination Certificate

active

06673908

ABSTRACT:

BACKGROUND OF THE INVENTION
This application concerns the field of mammalian therapeutics and the selection of therapeutic regimens utilizing host genetic information, including gene sequence variances within the human genome in human populations.
The information provided in the Background of the Invention is not admitted to be prior art to the present invention but is provided solely to assist the understanding of the reader.
Many drugs or treatments have highly variable safety and efficacy effects on different individuals. Due to such variability, a given drug or treatment may be effective in one individual but ineffective or ill tolerated in another individual. Thus, administering such drugs to individuals, who would not benefit from such administration, would result in wasted cost and time. It could also directly worsen the patient's condition and even cause the patient's death.
For some drugs, variances in individual reaction, measured in selected pharmacokinetic parameters, has been shown to be inheritable by over 90%. For a limited number of drugs, variances in DNA sequences of specific genes involved in drug action and metabolism have been identified. These variances have been shown to variably affect safety or efficacy of these drugs in different individuals. As the human genome sequencing is completed and as additional human gene sequence variances are identified, power of genetic methods for predicting drug response will further increase.
In this application, we address the difficulties that arise in treating inflammatory diseases and other diseases in which modulation of immunologic function provides the basis for therapeutic intervention, including for example, diseases treated with antiinflammatory, analgesic or antipyretic drugs as well as autacoids, eicosanoids, interleukins, cytokines or their agonists or antagonists. Diseases or conditions involving the inflammatory response or the immune system constitute a complex and heterogeneous group of diseases, involving all organ systems from the central nervous system and the circulatory system to the viscera and skin. These diseases may be acute or chronic, may progress from an acute stage to a chronic condition, or may exhibit a waxing and waning pattern of flare ups and remissions. Due to their wide anatomical distribution, this group of diseases can (collectively) lead to impairment of a wide range of essential physiological functions. The unifying theme in the treatment of these diseases is the modulation of inflammatory mediators or immune function. The evaluation of long term response to therapy is, for many of these diseases, the most important index of treatment efficacy, due to the progressive nature of inflammatory or immunological diseases. Since it is often difficult to assess the long-term effects of treatment over a short observation period (particularly for diseases with a waxing and waning pattern) there is considerable utility in a genetic test that can predict long term outcomes. Many treatments for diseases with significant inflammatory or immunological components are quite costly. Again, the development of a genetic test that can be used to identify a high responder group may change the economics of treating a population with an expensive therapy. Therapeutics that modulate immunologic or inflammatory responses also frequently pose significant risks for patients. Thus, a test that would allow more judicious use of potentially harmful compounds or biologicals on patients likely to suffer side effects, and/or those patients unlikely to benefit from treatment, would have considerable use both in drug development and in effective use of approved treatments. As healthcare becomes increasingly costly, the ability to allocate healthcare resources effectively becomes more urgent, and methods that lead to safer and more economical use of medicines will contribute to more effective use of healthcare resources.
SUMMARY OF THE INVENTION
The present invention is concerned generally with the field of identifying an appropriate treatment regimen for an inflammatory disease (or a disease in which modulation of the inflammatory response or the immune system is being tested for therapeutic effect) based upon genotype in mammals, particularly in humans. It is further concerned with the genetic basis of inter-patient variation in response to therapy, including drug therapy. Specifically, this invention describes the identification of gene sequence variances useful in the field of therapeutics for optimizing efficacy and safety of drug therapy. This will be accomplished by establishing diagnostic tests for variances and demonstrating their value in the development, marketing, and use of pharmaceutical products in the clinic. Methods for identifying genetic variances and determining their utility in the selection of optimal therapy for specific patients are also described. In general, the invention relates to methods for identifying genetically defined patient subsets that respond to drug therapy differently from other subsets or controls.
The inventors have determined that the identification of gene sequence variances in genes that may affect response to therapeutic interventions directed against diseases in which there is abnormal immune/inflammatory response can be exploited to improve therapeutic outcomes for such diseases. Such variances can be used, for example, to identify patients in whom specific therapeutic interventions are likely to be efficacious, well tolerated, and safe. Methods are described in this application for determining whether genetic variances account for variable drug efficacy and safety and for determining whether a given drug or other therapy may be safe and effective in a class of patients with a particular genotype. Methods are also described for developing diagnostic tests so that pharmacogenetic tests can be used in the care of individual patients. Also provided in this invention are identifications of genes and sequence variances which can be useful in connection with predicting differences in response to treatment and selection of appropriate treatment of a disease or condition. A target gene and variances have utility in pharmacogenetic association studies and diagnostic tests to improve the use of certain drugs or other therapies including, but not limited to, the drug classes and specific drugs identified in the 1999 Physicians' Desk Reference (53rd edition), Medical Economics Data, 1998, or the 1995 United States Pharmacopeia XXIII National Formulary XVIII, Interpharm Press, 1994, Examples 1 through 3 or other sources as described below.
The terms “disease” or “condition” are commonly recognized in the art and designate the presence of signs and/or symptoms in an individual or patient that are generally recognized as abnormal. Diseases or conditions may be diagnosed and categorized based on pathological changes. Signs may include any objective evidence of a disease such as changes that are evident by physical examination of a patient or the results of diagnostic tests which may include, among others, laboratory tests to determine the presence of DNA sequence variances or variant forms of certain genes in a patient. Symptoms are subjective evidence of disease or a patients condition, i.e. the patients perception of an abnormal condition that differs from normal function, sensation, or appearance, which may include, without limitations, physical disabilities, morbidity, pain, and other changes from the normal condition experienced by an individual. Various diseases or conditions include, but are not limited to; those categorized in standard textbooks of medicine including, without limitation, textbooks of nutrition, allopathic, homeopathic, and osteopathic medicine. In certain aspects of this invention, the disease or condition is selected from the group consisting of the types of diseases listed in standard texts such as Harrison's Principles of Internal Medicine (14th Ed) by Anthony S. Fauci, Eugene Braunwald, Kurt J. Isselbacher, et al. (Editors), McGraw Hil

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Tumor necrosis factor receptor 2 does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Tumor necrosis factor receptor 2, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tumor necrosis factor receptor 2 will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3242193

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.