Tubular yielding holder for various size pens

Supports: racks – Special article – Article includes elongated portion

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C211S060100, C211S069000, C211S070600

Reexamination Certificate

active

06202862

ABSTRACT:

BACKGROUND
1, Field of Invention
This invention relates to pen holders, specifically to such holders which are used for holding pens of various size.
2. Description of Prior Art
Pen manufacturers commonly supply consumers with pens that have different sizes, lengths, and degrees of slope along the pen length. Pen manufactures often equip pen models with a mating cap to prevent evaporation of ink.
These pens require the use of two hands for removing caps before writing. Conversely, after writing, the caps need to be installed to prevent drying of ink. However, writers objected because the act of using a cap in such a manner becomes tedious.
Thereafter, inventors created pen holders to facilitate one-hand operation for writing. U.S. Pat. No. 5,405,024 to Sahf (1995) discloses a complex rack with an internal groove for a ring seal. However, ink can easily contaminate the seal precluding the use of different colors of ink pens. U.S. Pat. No. 5,163,549 to Hayduchok (1992) shows a hollow rigid modular pen holder system. However, this system requires a close tolerance between the pen and the holder. U.S. Pat. No. 5,033,629 to Caine (1991) demonstrates a thin resilient cylindrical sleeve mounted in a rigid box. However, the round inner sleeve area has a static unbiased hole size. Thus, the seal must compress with ever greater pressure when pens of larger sizes are inserted . Also, pens must be kept in a upright position to prevent toppling precluding portable hand-held use of holder while writing. Finally, Caine's pen holder grips pens at the tip diameter increasing the risk of ink contamination. U.S. Pat. No. 4,493,575 to Mutschler (1985) employs an internal tapered sleeve attached at one end only. However, the sleeve can be pulled out of holder along with pen unless sleeve is rigid. U.S. Pat. No. to Kennamer 2,957,270 (1960) shows a solid block that slides on a track with a plurality of cavities therein. However, the solid block needs to be of a rigid low friction material so as to be able to slide on dovetail rib. U.S. Pat. No. 2,082,831 to Hansen (1935), U.S. Pat. No. 1,789,439 to Horix (1926), and U.S. Pat. No. 1,641,829 to Sheaffer Walter and Sheaffer Craig (1924) illustrate sleeves mounted to a base at one end. However, the sleeves need to be made of a rigid material to prevent collapse when pens are inserted. U.S. Pat. No. 2,011,040 to Cuthbert (1935) and U.S. Pat. No. 1,804,120 to Sengbusch (1927) document complex multiple part holders that use resilient gripping fingers to accommodate different size pens. However, these configurations would be prohibitively expensive to manufacture. U.S. Pat. No. 1,762,104 to Liddell (1928) divulges a sleeve attached at one end with a series of inner-stepped recesses. However, the shoulder of the pen abuts on top of the recess requiring gravity to maintain upright position. Also, holder cannot maintain pens in horizontal position without toppling and falling out. U.S. Pat. No. 1,641,846 to Fremon Jules and De Haven Avery (1927) embodies a rubber cylindrical sleeve with an internal shoulder and a flared open end. However, the shoulder of pen sits on top of the internal shoulder in a loose fashion thus requiring a vertical position. U.S. Pat. No. 1,620,529 to Ferris (1927) presents a rubber sleeve inserted into a base. However, the sleeve has an axial internal groove preventing an airtight seal. Also, different size pens are accommodated by using a new sleeve with mating size bore. U.S. Pat. No. 3,866,992 to Katz (1975) and U.S. Pat. No. 3,428,380 to Danjczek (1969) displays tubular elements seated in a container filled with water. However, tubular elements do not provide a perfect airtight seal. U.S. Pat. No. to 5,850,917 Denton (1998) shows a box with cavities therein. However, Denton teaches that his box is rigid and requires a foam liner to hold syringes of different diameters. Additionally, Denton explains that the holder is designed to hold syringes with a sterile cap over a hypodermic needle. Also, Denton's syringe holder does not compensate for the effect that various syringe widths have on the ratio of protruding syringe length to inserted syringe length. U.S. Pat. No. to 4,253,830 Kazen (1981) cites a resilient cylindrical tapered stepped sleeve inserted into a rigid box. Nevertheless, the sleeve encompasses a constricting aperture wall that results in an unbiased static hole. Also, Kazen has designed the holder to continuously vent to atmosphere so that dental instruments will not corrode in the holder.
All of the pen holders mentioned attempt to solve the objections of writers, nevertheless all of the pen holders heretofore known endure from a number of disadvantages:
(a) The tubular side wall of the holders in the present do not have a constant yielding frictional engagement with pens of different sizes. Such holders require ever increasing force to insert pens of larger sizes therein. Such increasing pressure on holder requires the use of reinforced fastening system to prevent holder from moving. Also, such holders are limited to permanent fixtures that will not move. Portable devices such as easels or tripods need to be permanently attached to the earth. Pens cannot be pulled out of the holder by grasping cap attached to end of barrel without detachment. Conversely, such holders cannot maintain minimum frictional engagement to facilitate pen release. Pens of smaller sizes result in ever decreasing holding force on pens. Smaller pens require the holder to be mounted in a vertical position to prevent pens from toppling or falling out. Also, such holders cannot maintain an airtight seal around pens of various size so that only minimum force is need to substantiate a perfect seal. Such holders do not readily allow consumers to buy different pen models which will work in such holders with consistent performance. Finally, variance in frictional engagement requires a writer to accommodate to different insertion and release pressures of various pens from holder.
(b) In present holders, the marking tips of pens can easily touch the inner wall of tubular holder. If one uses pens with different ink colors the holder must be cleaned prior to insertion. Such holders engage pens at their tip. The use of a plurality of holders with different color pens requires assignment of each pen to an exclusive holder to prevent cross contamination of ink. Such holders decrease writing speed when writers dedicate a specific color pen to an addressed holder.
(c) Present tubular holders do not compensate for the effect that various pen widths have on the ratio of protruding pen length to inserted pen length. Pens of narrow diameters will engage tubular holder deeper than pens of larger diameters. Consequently, a narrow diameter pen will have a greater percentage of its pen length inside the tubular holder than a larger diameter pen of comparable length. Accordingly, narrow pens require writers to reach a farther distance to grab pens verses a shorter distance for larger diameter pens. Reaching for pens of differing protruding lengths requires greater concentration for a writer.
(d) Pen holders of the present require the use of multiple parts and complex installations, thereby increasing cost and sales resistance for consumers. Also, multiple-part designs increase the chance for product defects.
(e) Pen holders of the present are limited to the use of rigid materials to prevent collapse. Rigid material requires that pen and holder be of mating dimensions to provide seal. Also, rigid material requires a snap fit. Mating surface between pen and holder require the use of different size holders for different size pens. The use of different size holders requires writers to put pens back in their assigned holder. Such holders require an exclusive model of pen to be used. Other pen models must remain with original caps precluding one-hand operation.
(f) The use of an internal shoulder to seat pens requires the use of gravity for pens to remain seated. Pens used in horizontal position will topple and not seat properly for airtight seal. Holders that provi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Tubular yielding holder for various size pens does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Tubular yielding holder for various size pens, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tubular yielding holder for various size pens will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2519637

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.