Tubular container with a heat seal having non-symmetrical...

Envelopes – wrappers – and paperboard boxes – Paperboard box – Nonunitary – peelable closure or securing element

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C156S069000, C220S359300, C229S005500

Reexamination Certificate

active

06264098

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to food containers and methods and apparatus for making food containers, and more particularly relates to heat seals used to seal such containers.
BACKGROUND OF THE INVENTION
Food and drink products and other perishable items are often packaged in tubular containers, which are sealed at both ends. These tubular containers typically include at least one structural body ply and are formed by wrapping a continuous strip of body ply material around a mandrel of a desired shape to create a tubular structure. The body ply strip may be spirally wound around the mandrel or passed through a series of forming elements so as to be wrapped in a convolute shape around the mandrel. At the downstream end of the mandrel, the tube is cut into discrete lengths and is then fitted with end closures to form the container.
Tubular containers of this type typically include a liner ply on the inner surface of the paperboard body ply. The liner ply prevents liquids, such as juice, from leaking out of the container and also prevents liquids from entering the container and possibly contaminating the food product contained therein. Preferably, the liner ply is also resistant to the passage of gasses, such as oxygen and nitrogen, so as to prevent odors of the food product in the container from escaping and to prevent atmospheric air from entering the container and spoiling the food product. Thus, the liner ply provides barrier properties and the body ply provides structural properties.
In addition, current commercial containers often have membrane-type lids or end closures heat sealed to a curled or bead-shaped rim of the composite container wall to form a peelable seal. The rim is formed by turning outwardly the end of the container to position the inner layer of the liner material on the outwardly curved surface.
A major difficulty in developing a usable heat seal between the container lid and the rim of the container wall is balancing bond strength with ease of opening for the end user. During transport, the sealed containers experience temperature and pressure extremes that stress the heat seal and can lead to rupturing of the container. The bond strength must be sufficient to withstand the rigors of transportation. In particular, when containers packaged and sealed at one elevation are then subjected to lower ambient air pressure, such as during air transportation or when transported to consumers at higher elevations, a relative positive pressure is created within the container which could cause the seal between the lid and the container to rupture. This ability of the container to avoid rupturing under such conditions is known as burst strength. However, as the burst strength increases, there is generally a concomitant increase in difficulty of opening of the container, which is exhibited by the peel strength or peel resistance of the container. The higher burst strength indiscriminately prevents both rupturing during transport and opening by the end user.
Certain types of heat sealable coatings have been used in both the lidding and liners of conventional containers. For example, SURLYN® polymer, a product of Dupont, is a material known in the art and is commonly used as a heat seal coating. SURLYN® polymer is an ionically cross-linked polymer with limited flow characteristics when heated. Typically, the layer of the container and the layer of the membrane which contact each other are constructed of SURLYN® polymer, and may be coated with a wax. These two layers of SURLYN® polymer are heat sealed along the top surface of the container bead. The two SURLYN® polymer layers create an extremely strong bond layer that remains relatively uniform in thickness across the seal area. Due to the strong cross-linked bond created by SURLYN® polymer, however, opening the container can require a peel force which is too high for some consumers and usually results in tearing and exposure of the other layers of the container wall, such as the paperboard body wall, as is illustrated in U.S. Pat. No. 4,280,653 to Elias. This gives the top of the container a ragged, undesirable appearance.
In the parent application, Ser. No. 09/065,783, the formation of two heat seal beads is described. The two beads comprise an inner heat seal bead and an outer heat seal bead, each heat seal bead being formed of the heat sealable polymers of the seal layers of the membrane and the liner. The two beads are formed by using heat and pressure to force the heat sealable polymers to flow away from the central portion of the heat seal area and towards the interior and exterior of the container. The reduction in the amount of heat seal material in the central heat seal area reduces the bond strength in the central heat seal area and allows opening of the container without unsightly tearing of the liner and exposure of the paperboard layer of the container wall. However, formation of the beads according to the parent application does not entirely erase the difficulty of balancing burst strength and ease of opening.
It would be advantageous to provide a sealed container and method for sealing a container that combine improved ease of opening and an attractive appearance after opening with the seal strength and barrier properties required for protection of the products within the container.
SUMMARY OF THE INVENTION
The composite container of the present invention successfully balances the need for ease of opening with the burst strength necessary to maintain a hermetic seal despite changes in pressure routinely experienced during transportation of the container. The present invention provides a sealed container having a larger heat seal bead on the interior side of the heat seal area than on the exterior side of the heat seal. The inner heat seal bead contains a greater amount of heat seal material and has a greater width than the outer heat seal bead. Since it had been discovered that the inner bead is primarily responsible for maintaining burst strength and the outer bead is primarily responsible for peel strength, a larger inner bead and smaller outer bead result in a good balance between burst strength and ease of opening.
In one embodiment, the present invention provides a sealed composite container for products having a tubular body member that includes at least one paperboard body ply. A liner ply is adhered to the inner surface of the tubular body member and includes a barrier layer and a seal layer. The seal layer defines the innermost surface of the liner ply and comprises a heat sealable composition. At least one end of the body member and liner ply is rolled outwardly to form a curled or bead-shaped rim exposing the seal layer. A lid for closing the end of the tubular body member is also provided. The lid has a barrier layer and a seal layer adjacent to the seal layer of the liner ply on the rim. The seal layer of the lid also comprises a heat sealable composition. The two seal layers are adhered together to form a heat seal between the lid and the liner ply. The heat seal comprises an inner bead formed of the heat sealable composition of the seal layers and facing the interior of the container and an outer bead also formed of the heat sealable compositions on the opposite side of the heat seal. The inner bead is larger than the outer bead, meaning that the inner bead comprises a larger amount of the heat seal compositions than the outer bead.
Specifically, the width of the inner bead is about 90 to about 190 microns, preferably about 130 to about 180 microns, and the width of the outer bead is about 60 to about 140 microns, preferably about 80 to about 120 microns. In terms of percentage, the width of the inner bead is about 10 to about 40% greater than the width of the outer bead, preferably about 20 to 30% greater. The heat seal further comprises an intermediate region between the two beads having a width of about 0 to about 30 microns.
The seal layer of the liner ply is preferably selected from the group consisting of high-density polyethylene, low-density polyethylene, metall

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Tubular container with a heat seal having non-symmetrical... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Tubular container with a heat seal having non-symmetrical..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tubular container with a heat seal having non-symmetrical... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2492315

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.