Drug – bio-affecting and body treating compositions – Extract or material containing or obtained from an alga as...
Reexamination Certificate
2001-07-11
2003-12-02
Tate, Christopher R. (Department: 1651)
Drug, bio-affecting and body treating compositions
Extract or material containing or obtained from an alga as...
C424S725000, C424S750000, C424S757000, C424S758000, C424S768000, C424S776000, C514S419000, C514S909000, C514S910000, C514S923000
Reexamination Certificate
active
06656473
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to compositions comprising natural sources of tryptophan, particularly protein-bound tryptophan from plants, processes for making said compositions; physical formulations of said compositions, and use of said compositions as dietary supplements, food, beverage, and as pharmaceutical compositions for inducing sleep, improving tryptophan metabolism, alleviating reduced levels of serotonin in a human, anxiety disorder, depression, obsessive compulsive, aggression, chronic paid and eating disorder.
BACKGROUND TO THE INVENTION
Tryptophan is an essential amino acid found in numerous naturally occurring plant proteins and which has a number of interesting medicinal qualities including treatment of insomnia as well as an adjunct in the treatment of a number of psychiatric disorders. After absorption, tryptophan circulates in the blood as approximately 80% bound to plasma albumin with the remaining 20% circulating as free tryptophan, and under appropriate conditions, tryptophan is transported into the brain. Once across the blood brain (BBB), tryptophan becomes available for metabolism into serotonin, a neurotransmitter implicated in mood and sleep regulation (Boman, 1988). Serotonin, in turn, is metabolized to melatonin; a sleep related hormone found in the pineal gland, a small cone-like structure in the epithalamus of the brain that regulates the 24-hour circadian rhythm in humans. Ingestion of a sufficient quantity of tryptophan per se consistently results in reduced sleep latency i.e. the time from “lights out” to sleep, and an improvement in overall quality of sleep through improved sleep architecture (Boman, 1988). Tryptophan metabolism to serotonin also serves well in conditions where depleted serotonin levels exists such as anxiety disorders, depression, obsessive-compulsive some pain disorders, aggression and eating disorders.
The hypnotic effects of tryptophan are well studied and follow a fairly flat dose-response curve with a plateau at approximately 1000 mg (for review see Schneider-Helmut and Spinweber, 1986). When given alone, as little as 250 mg of tryptophan is sufficient to produce improved sleep in people with mild insomnia, or in those reporting longer-than-average sleep latency (Hartmann and Spinweber, 1976; Hartmann 1982). Dosages of 1000 mg are associated with more consistent results (Schneider-Helmut and Spinweber, 1986) but higher dosages (2,000-12,000 mg) offer little extra benefit and, indeed, the highest dosages (12,000 mg) are associated with disrupted sleep architecture despite a reduction in sleep latency (Griffiths et al 1972).
There remains a need, however, for addressing the aforesaid medical conditions without administration of “free” tryptophan per se.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide an alternative source of tryptophan for in vivo medical treatment of humans.
It is a further object to provide said alternative source in user friendly forms.
It is a further object to provide an improved method of producing said alternative source.
Thus, in its broadest concept, the invention provides an efficacious and beneficial supply of tryptophan across the blood brain barrier by providing a supply of protein-bound tryptophan from a suitable plant source in an edible, digestible form to generate tryptophan in vivo.
Accordingly, in one aspect the invention provides a composition comprising at least partially defatted meal from a plant source containing protein-bound tryptophan, and a physiologically acceptable diluent or carrier therefor.
A naturally derived, tryptophan-rich composition with several unique characteristics has been developed by enriching the protein-bound tryptophan content of a tryptophan-rich protein source. Compositions of the invention comprise a plant source naturally containing protein-bound tryptophan, preferably squash seeds, such as butternut squash seeds, peppercorn squash seeds and pumpkin seeds. Preferably, the plant source is at least partially defatted to concentrate the protein-bound tryptophan content. The composition further, preferably, comprises a carbohydrate source, such as glucose, in an amount sufficient to enhance uptake of tryptophan across the blood brain barrier and to circumvent the competition for BBB transport sites into the central nervous system (CNS). The composition can further optionally comprise physiologically acceptable vehicle(s), flavorings, colors and other nutrients, such as vitamins, preferably vitamin B3 and/or vitamin B6.
In a preferred embodiment, the composition comprises at least partially defatted squash seeds, particularly butternut squash, pumpkin and peppercorn squash seeds, glucose and vitamins B3 and B6.
The invention further pertains to dietary supplements, in the form of, e.g. a tablet, powder, suspension, liquid, capsule or gel; foods, e.g., dietary bar, cookie, baked good, snack food, candy, candy bars, beverages and like edible foods comprising the composition of the invention.
The compositions of the invention can be used to induce sleep in an individual in need thereof, such as those suffering from insomnia or condition associated with a sleep disorder. Alternatively, the compositions can be administered to an individual to improve their tryptophan metabolism, such as for those individuals suffering from a condition or disease associated with reduced levels of serotonin. The compositions can be used as a hypnotic, but may also serve a role in clinical states associated with reduced levels of serotonin, a tryptophan metabolite: depression, anxiety states including obsessive-compulsive disorder, eating disorders and chronic pain.
Thus, we have discovered, using second derivative spectroscopy, that certain plant sources and, specifically, plant seeds possess relatively high levels of protein-bound tryptophan and that these materials can be used to provide tryptophan in vivo. Accordingly, a process has been developed to produce edible compositions having enhanced levels of protein-bound tryptophan as a natural protein source of tryptophan richer than the known natural source. Plants that use gramine typically contain high levels of tryptophan and can be used herein as the plant source. It is desirable, but not essential, that the starting plant material contain at least 200 mg/100 g or at least 0.2% tryptophan in its protein-bound form. Tryptophan concentration can be determined using known methods, including, for example, high pressure liquid chromatography (HPLC), second derivative spectroscopy or any other known methodology. Second derivative spectroscopy is the preferred method to quantitatively analyze tryptophan levels as it eliminates background absorbence as, hereinafter, described.
According to an embodiment of the invention, protein-bound tryptophan levels present in the plant material source are enhanced using a series of steps to extract oil from the plant material to render the material partially defatted. The plant source can be a seed such as, for example, but not limited to, butternut squash seed, peppercorn squash seed, pumpkin seed, lentil seed, sunflower seed, flax seed, watermelon seed, sisymbrium seed, cotton seed, sesame seed, canola seed, evening primrose seed, barley, safflower seed, alfalfa seed, soy beans and combinations thereof. Preferably, the seed is a butternut squash seed as it is believed to contain the highest ratio of tryptophan to total proteins, relative to other seed types. The plant source can also be a vegetative part of the plant, such as alfalfa, seaweed or kelp. Although it is preferred to partially defat the plant source to enhance protein-bound tryptophan levels, defatting is not essential to practice the invention.
In a further aspect, the invention provides a method for producing an enriched, natural source of tryptophan, comprising identifying a naturally occurring source of protein-bound tryptophan in a plant source; compressing the plant source under conditions sufficient to release oil contained therein; and at least partially removing the oil contained
Hudson Craig J.
Hudson Susan P.
Flood Michele
Morgan & Lewis & Bockius, LLP
Tate Christopher R.
LandOfFree
Tryptophan source from plants and uses thereof does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Tryptophan source from plants and uses thereof, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tryptophan source from plants and uses thereof will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3153411