Illumination – Light fiber – rod – or pipe
Reexamination Certificate
1999-01-29
2001-03-06
Quach, Y. (Department: 2875)
Illumination
Light fiber, rod, or pipe
C362S297000, C362S346000
Reexamination Certificate
active
06196709
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to optical light guide illumination systems, and more particularly to optical light guide illumination systems employing improved and more efficient technology for capturing light from an extended source and coupling that light into a plurality of light guides.
BACKGROUND OF THE INVENTION
In optical illumination systems, it is desirable to couple light from an illumination source (typically a lamp) into a light guide, or a plurality of light guides, as efficiently as possible. As the coupling efficiency improves, manufacturing and operating costs decline. When evaluating the coupling efficiency from any illumination source into any particular light guide, the designer must consider the size (and aspect ratio) and numerical aperture of both the source and the light guide. For optimum coupling, the image of the lamp on the light guide surface should match as closely as possible the spatial geometry and numerical aperture of the light guide.
High intensity white light sources used in illumination applications are typically extended sources (as opposed to point sources), because they have a finite illuminating element. The emitting surface cross-section is much greater than the cross-section of typical light guides. In addition, many lamps may be considered Lambertian or Quasi-Lambertian radiators. For such lamps, the radiation profile (far-field pattern) far exceeds the numerical aperture of the light guide. Since the numerical aperture and core cross-section of the light guide are both substantially smaller than the corresponding elements of the illumination source, it is impossible to efficiently couple the light into a single light guide. Consequently, a plurality of light guides must be placed at the output of the optical system in order to collect the light that exceeds the core cross-section and numerical aperture of a single light guide.
In addition to the near-field and far-field mismatch conditions between a lamp and a light guide, further geometric issues complicate source to light guide coupling efficiency. Since these illumination sources exhibit large aspect ratios, typically between 5:1 and 20: 1, then the near-field conditions of the lamp and the light guide are not easily matched (since light guides generally have an aspect ratio of one). If the entire image of the lamp is focused on the light guide end, then the light guide is greatly underfilled (spatially) in one dimension. If the image size is increased to match the minor axis of the image to the diameter of the light guide, ten the major axis of the image will greatly overfill the light guide. In either case, the coupling efficiency is not optimized.
Current multi-light guide couplers are designed to divide the radiation profile of extended illumination sources by placing a plurality of lenses around the source. Each lens collects only the solid angle of light emanated from the illumination source which can be accepted by the light guide; i.e. a solid angle less than or equal to the numerical aperture of the light guide.
A conventional way to launch light into a light guide is to focus the light onto the light guide end using a lens. This generally involves imaging the entire source as seen from the perspective of the lens. This technique can be very effective if the aspect ratio of the source is a close match to the aspect ratio of the light guide, or if the source is sufficiently small relative to the size of the light guide. However, if there is a large difference in aspect ratio, such as is the case for a high-pressure sodium lamp, which is long and narrow, then this brings about a loss of efficiency due to the mismatched geometry.
SUMMARY OF THE INVENTION
The present invention resolves the difficulties discussed supra, by dividing the length of the light source into shorter segments, so that the aspect ratio of the light source can be more closely matched to the aspect ratio of the light guide. This enables the coupling efficiency of the total system to be improved.
More particularly, in the inventive system the illumination source's radiation profile, and its emitting surface, are both divided by a reflective optical system to enhance the spatial and solid angle match between the lamp and the light guide. With this inventive technique, the coupling between a lamp and a light guide are optimized. The reflective optical system comprises a plurality of troughs in a reflector, which together divide the major axis of the emitting surface of the illumination source. In this manner, the effective source aspect ratio can be imaged onto each light guide and can be optimized to match the light guide's spatial geometry, which is generally circular. In addition, the radius of curvature of the reflector and coupling lens is chosen to match the numerical aperture of the light guides placed at the output of the lens system. In this manner, the source coupling efficiency is optimized.
Using the inventive technique, each light guide has a part of the source dedicated to it. This is a significant difference from the common state-of-the-art technique where the entire source is shared with many light guides. The invention provides more design freedom to optically couple high aspect ratio sources with light guides in an efficient manner.
In one particular aspect of the invention, an illumination system is provided which comprises an illumination source having an illumination emitting surface wherein the emitting surface has a longer dimension and a shorter dimension, so that its aspect ratio is substantially greater than one, and preferably greater than about three. Also included in the system are a plurality of reflector segments disposed adjacent to the illumination source, which are arranged to divide the emitting surface along its longer dimension into a plurality of sections. As a result of this inventive configuration, light emitted from each section of the emitting surface is directed to a different corresponding one of the plurality of reflector segments. The inventive system also comprises a plurality of light guides which have receiving ends for receiving light distributed from different corresponding ones of the plurality of reflector segments.
In another aspect of the invention, an illumination system is provided which comprises an illumination source having an illumination emitting surface, which has a longer dimension and a shorter dimension, so that its aspect ratio is substantially greater then one. Also included in the inventive system are a plurality of trough-like reflector segments disposed adjacent to the illumination source, which are interleaved to divide the emitting surface along its longer dimension into a plurality of sections, so that light emitted from each section of the emitting surface is directed to a different corresponding one of the plurality of reflector segments. A plurality of lenses having a one-to-one correspondence to the plurality of reflector segments are arranged so that respective ones of the lenses receive light reflected from corresponding ones of the reflector segments. Additionally, a plurality of light guides having a one-to-one correspondence to the plurality of lenses are provided and are arranged so that a receiving end of each of the light guides receives light distributed from a corresponding one of the plurality of lenses.
In still another aspect of the invention, there is disclosed a method for distributing light from an illumination source having an aspect ratio substantially greater than one to a plurality of light guides. This method comprises the steps of dividing a longer dimension (i.e. the length) of the illumination source into a plurality of sections, receiving light from each section of the illumination source on a corresponding reflector segment, and reflecting the light onto a receiving end of a light guide.
The invention, together with additional features and advantages thereof, may best be understood by reference to the following description taken in conjunction with the accompanying illust
Riser Andrew P.
Rykowski Ronald
Quach Y.
Remote Source Lighting International Inc.
Stout Donald E.
Stout, Uxa Buyan & Mullins, LLP
LandOfFree
Trough reflector and lens coupler for lightguide... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Trough reflector and lens coupler for lightguide..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Trough reflector and lens coupler for lightguide... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2513752