Trilayer heterostructure Josephson junctions

Active solid-state devices (e.g. – transistors – solid-state diode – Thin active physical layer which is – Tunneling through region of reduced conductivity

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06753546

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to structures that have quantum coherence, such as Josephson junctions, and more particularly to their application in superconducting quantum computing.
BACKGROUND
The quantum computer is rapidly evolving from a wholly theoretical idea to a physical device that will have a profound impact on the computing of tomorrow. A quantum computer differs principally from a conventional, semiconductor chip-based computer, in that the basic element of storage is a “quantum bit”, or “qubit”. A qubit is a creature of the quantum world: it can exist in a superposition of two states and can thereby hold more information than the binary bit that underpins conventional computing. One of the principal challenges in quantum computing is to establish an array of controllable qubits, so that large scale computing operations can be carried out. Although a number of different types of qubits have been created, it is believed that the practical realization of a large scale quantum computer is most likely to be achieved by harnessing the properties of superconducting junctions. It is in the superconducting regime that many materials display their underlying quantum behavior macroscopically, thereby offering the chance for manipulation of quantum states in a measurable way.
In 1962, Josephson proposed that non-dissipating current would flow from one superconductor to another through a thin insulating layer, see B. D. Josephson,
Phys. Lett.,
1:251, (1962). Since then, the so-called Josephson effect has been verified experimentally and has spawned a number of important applications of superconducting materials. In particular, it has been found that the thin insulating layer originally used by Josephson is an example of a general class of barriers known as weak links. These weak links are interruptions of the translational symmetry of the bulk superconducting material on the same scale as the coherence length of the material. Examples of weak links include the following: grain boundaries, insulating gaps, tunneling junctions, constrictions, and any locations where the amplitude of the order parameter of the superconductor is diminished. The Josephson effect has been generalized to all weak links in a superconductor. Therefore any small interruption of a superconducting material, or an interface of two different superconductors, behaves as a Josephson junction. Avoiding the formation of weak links where Josephson junctions are not intended can make the fabrication of devices based on superconducting components difficult.
Nevertheless, the Josephson junction has found practical application in a device known as a superconducting quantum interference device (SQUID). The current and voltage of a superconducting loop with two small insulating gaps behaves in a previously unexpected way that depends on the magnetic flux enclosed in the loop. SQUIDs are useful for sensitive measurement and in the creation of magnetic fields. For example, see chapter 1 of A. Barone and G. Paternò,
Physics and Applications of the Josephson Effect
, John Wiley & Sons, New York, (1982), which is incorporated herein by reference.
Two types of superconductors are regularly used nowadays: conventional superconductors and unconventional superconductors. The most important phenomenological difference between the unconventional superconductors and conventional superconductors is in the orbital symmetry of the superconducting order parameter. In the unconventional superconductors, the pair potential changes sign depending on the direction of motion in momentum space. This has now been experimentally confirmed; see e.g., C. C. Tsuei and J. R. Kirtley,
Rev. Mod. Phys.,
72, 969, (2000). The effects of this pairing were understood long before this experimental confirmation.
For example, it was discovered that in unconventional superconducting materials such as YBa
2
Cu
3
O
x
(“YBCO”) that have orthorhombic crystal structures, there existed a significant subdominant order parameter mode that is spherical in momentum space (referred to as an s-wave); see K. A. Kouznetsov et al.,
Phys. Rev. Lett.,
79, 3050, (1997).
The coherence length of an unconventional superconductor is not isotropic. In an orthorhombic superconductor, the coherence length in the c-axis direction is much less than in the a and b directions. Correspondingly, the critical current is much smaller in the c-axis direction. Furthermore, the coherence length in all directions of an unconventional superconductor is small enough for a weak link to form easily at any junction. Given that the Josephson effect is present in all weak links, the short coherence length poses a difficulty for forming devices that utilize unconventional superconducting materials.
Hence, superconducting single electron transistors (SET's) have generally been made from conventional superconductors. Efforts to make them from unconventional superconducting materials have not been particularly successful. See, e.g., S. E. Kubatkin et al.,
JETP Lett.,
63, 126-132, (1996) and A. Tzalenchuk, poster presentation at SQUID 2001, both of which are incorporated herein by reference. The oscillations of a SET made from an unconventional superconducting material would have only a single charge periodicity, not both a single and a double charge period. Both effects are useful in superconducting quantum computing, where a mechanism for controllable switching of supercurrent is important and where the supercurrent charge carriers are Cooper pairs. Thus there is a need for a controllable supercurrent switch that is based on an unconventional superconductor.
Other types of junctions are known, but suffer from deficiencies that prevent their use in superconducting quantum computing. For example, Racah et al.,
Physica C,
263, 218-224, (1996), incorporated herein by reference, teach a junction comprising: YBCO, aluminum oxide and silver, i.e., an unconventional superconductor and a normal metal, separated by an insulator. However, no Josephson effect (in which Cooper pairs tunnel) was observed in Racah et al.'s structures; instead only quasi-particle tunneling was found. Furthermore such a junction has a dimension on the order of tens of microns.
Furthermore, junctions known in the art are far larger in area than the mesoscopic devices to which they need to be attached. This is a severe limitation, as size is often an enabling feature in quantum computers built from superconducting material. Certain components must be mesoscopic. Therefore, to implement quantum computing structures, Josephson junctions between conventional and unconventional superconductors are necessary, and no junction in the prior art suffices.
SUMMARY OF THE INVENTION
In accordance with the present invention, a Josephson junction is presented. In some embodiments, the junction includes an unconventional superconductor, an intermediate material, and a conventional superconducting material. In some embodiments, the resulting junction is in the c-axis direction of an orthorhombic unconventional superconductor. Alternatively, the junction may be oriented so that supercurrent flows in a direction in the a-b plane. The junction may be oriented so that either the c-axis direction or a direction in the a-b plane are aligned with the rest of the junction.
The present invention involves a Josephson junction comprising, in sequence: a first superconducting material layer; an intermediate layer having a first area of overlap with the first superconducting material layer; and a second superconducting material layer having a second area of overlap with the intermediate layer; wherein an area of intersection of the first area of overlap and the second area of overlap is less than or equal to about 0.1 &mgr;m
2
, and wherein the first superconducting material layer is in contact with a substrate. In a preferred embodiment, the first superconducting material is a crystalline material having a crystal structure with an a-axis, a b-axis, and a c-axis; such that the c-axis is normal to the substrate.
A Josephson jun

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Trilayer heterostructure Josephson junctions does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Trilayer heterostructure Josephson junctions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Trilayer heterostructure Josephson junctions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3363677

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.