Fluid sprinkling – spraying – and diffusing – Including supply holder for material – Moving solid surface engages material to be sprayed
Reexamination Certificate
2000-02-25
2001-12-04
Morris, Lesley D. (Department: 3752)
Fluid sprinkling, spraying, and diffusing
Including supply holder for material
Moving solid surface engages material to be sprayed
C043S132100, C043S900000
Reexamination Certificate
active
06325304
ABSTRACT:
FIELD OF THE INVENTION
The present invention pertains generally to the field of insecticide applicators, and more particularly to a non-pressurized, handheld trigger pump having an extended nozzle to permit insecticide to be drawn from a reservoir and injected into holes or voids, or applied to areas where access is limited.
BACKGROUND OF THE INVENTION
Insecticides are generally used either to prevent future infestation by harmful insects, to eliminate present infestation by killing such insects, or both. It is desirable to apply insecticides directly to the area of infestation. This can be difficult, however, when access to the area of infestation is limited, for example, in cases of infestation by wood-destroying insects such as termites, carpenter ants, or beetles. These insects may enter a wood member and destroy the member from the inside out, or may attack a wood member surrounded by other materials such as within a wall. Different technologies have been developed to deliver liquid insecticides into hard-to-access areas; however, each of these conventional technologies suffer from limitations that restrict their utility.
One conventional apparatus for applying insecticide is the aerosol sprayer. A typical example consists of a pressurized metal canister and a finger-activated release valve that ejects the contents through an orifice. A modified aerosol sprayer, having a highly flexible tube with a rigid needle end for directing contents, has also been developed by Makiki Electronics, Hauula, Hi. By the very nature of aerosol canisters, however, they may not be opened and refilled. Therefore, such canisters must be discarded when their contents are depleted. These apparatuses also present the typical dangers associated with all pressurized canisters: they must be kept away from high heat, may contain propellants that are flammable and/or pollute the air, and may spray contents uncontrollably if punctured. Moreover, since conventional aerosol cans are metallic and uninsulated, the cans and the contents ejected therefore need to be kept a safe distance away from electric wires, junction boxes, or outlets to avoid the possibility of the user receiving an electric shock.
Another ubiquitous apparatus for applying insecticide is the garden tank sprayer. A typical example consists of: a reservoir that may be filled with an insecticide, means such as a hand pump or compressor coupling for pressurizing the fluid contents of the reservoir, and a hose from the reservoir to a discharge valve and nozzle. Operation of a typical garden tank sprayer requires the user to fill the reservoir with fluid and then pressurize the reservoir via a hand pump or external compressor, before the fluid contents may be transported through the connecting hose and discharged through the discharge nozzle by selectively activating and deactivating the discharge valve. A typical garden tank sprayer reservoir holds a gallon or more of liquid. Since most termite infestation is localized to a particular area, using a garden tank sprayer for spottreatment of localized areas is often overkill, as such an applicator is may be tiresome to wield for long periods in hard-to-access areas. Typically, a garden tank sprayer reservoir is carried with one hand, while the discharge nozzle is manipulated with the other hand. That the garden tank sprayer requires two hands to operate limits its utility for treating confined or hard-to-reach spaces where it would be desirable for the user to have one hand free for positioning or bracing himself. Like aerosol cans, garden tank sprayers also present certain hazards inherent to pressurized liquid containers.
In light of the limitations of prior art insecticide delivery apparatuses, it would be desirable to provide a refillable handheld insecticide delivery apparatus whereby the insecticide would be delivered to areas where access is limited, such as recesses accessible only through small holes. It would also be desirable for this apparatus to be capable of also delivering contents in a spray, suitable for treating larger surfaces, such as large areas of exposed wood, when needed. It would further be desirable for this apparatus to be capable of being operated with a single hand. Simultaneous with the feature of being operable with a single hand, it would also be desirable for this apparatus to be capable of delivering in various directions without requiring the entire apparatus to be tilted, since tilting the apparatus may hinder the delivery of insecticide.
Shifting from the insecticide delivery apparatus to the insecticide itself, it is desirable from an efficiency standpoint to provide a permanent, non-polluting, non-carcinogenic, and non-flammable insecticide that can be used in the home. Conventional permanent, or nonbiodegradable, insecticides that would satisfy these criteria have been found to be carcinogenic products. Their use has hence been banned. It would also be desirable for an insecticide to be inorganic, to avoid allergic responses that commonly result from exposure to organic chemicals.
It would further be advantageous to provide an insecticide for wood-infesting insects that also eliminates various types of fungi and mold that contribute to wood rot. Again, since it is desirable to deliver insecticide directly to the affected area and access to such areas may be limited by painted or sealed wood, the need for this insecticide parallels the need for an improved insecticide delivery apparatus. In areas where residue may be accessible to humans or domestic animals, however, it would also be desirable to provide an insecticide that includes various built-in safety measures to deter consumption. Thus, there is a need for a permanent yet noncarcinogenic insecticide that targets insects, fungi, and mold, and deters consumption by humans or domestic animals.
It would be further desirable to provide an apparatus that may deliver fertilizer to a plant in an efficient manner that places the fertilizer close to the root structure of the plant to facilitate absorption.
SUMMARY OF THE INVENTION
The present invention is directed to a liquid insecticide applicator in the form of a refillable trigger pump having a semirigid tubular extended nozzle, suitable for applying or injecting insecticides such as solutions of containing disodium octaborate tetrahydrate into holes, joints, cracks, wall voids, or wood surfaces. The insecticide used is preferably permanent, inorganic, yet noncarcinogenic, odorless, and non-flammable, and targets insects, fungi, and mold while deterring consumption by humans or domestic animals. The liquid applicator is unpressurized to avoid the dangers and limitations of working with pressurized reservoirs. Accordingly, one aspect of the invention provides a hand-held trigger pump and reservoir, the pump having a semirigid, detachable tubular extended nozzle to deliver an insecticide into holes or wall voids. This extended nozzle is advantageously press-fit into a recess along the discharge end of the pump assembly, the size of the nozzle preferably being about 0.085 inch or less in outside diameter. This small size is desirable to permit insertion into {fraction (3/32)} inch or larger holes such as may be drilled into contaminated structures and wall voids, and may be easily patched following application of the insecticide.
In a second aspect of the invention, the insecticide mixture delivered by the trigger pump insecticide applicator is advantageously a water solution containing solute in an amount between 5 and 20 weight percent, said solute comprising disodium octaborate tetrahydrate in an amount 95% by weight, more preferably 97% by weight, pigment, and an ingredient selected from the group consisting of sucrose octa-acetate and denatonium benzoate.
In a third aspect of the invention, the trigger pump applicator may be used to deliver a liquid fertilizer to a plant by injecting the fertilizer below the soil surface, closer to the root structure of the plant.
REFERENCES:
patent: 2046089 (1936-06-01), Rebhahn
patent: 2723056 (1955-11-01), Smith
pat
Brite Alan D.
Brite Terry
Lyon & Lyon LLP
Morris Lesley D.
LandOfFree
Trigger-activated insecticide applicator with extended nozzle does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Trigger-activated insecticide applicator with extended nozzle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Trigger-activated insecticide applicator with extended nozzle will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2591433