Triacylglycerol based wax for use in container candles

Fuel and related compositions – Candle composition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C431S288000

Reexamination Certificate

active

06797020

ABSTRACT:

BACKGROUND
For a long time, beeswax was has been in common usage as a natural wax for candles. Over one hundred years ago, paraffin came into existence, in parallel with the development of the petroleum refining industry. Paraffin is produced from the residue leftover from refining gasoline and motor oils. Paraffin was introduced as a bountiful and low cost alternative to beeswax, which had become more and more costly and in more and more scarce supply.
Today, paraffin is the primary industrial wax used to produce candles. Conventional candles produced from a paraffin wax material typically emit a smoke and can produce a bad smell when burning. In addition, a small amount of particles (“particulates”) can be produced when the candle burns. These particles may affect the health of a human when breathed in.
Accordingly, it would be advantageous to have other materials which can be used to form clean burning base wax for forming candles. If possible, such materials would preferably be biodegradable and be derived from renewable raw materials. The candle base waxes should preferably have physical characteristics, e.g., in terms of melting point, hardness and/or malleability, that permit the material to be readily formed into candles having a pleasing appearance and/or feel to the touch, as well as having desirable olfactory properties.
Additionally, there are several types of candles, including taper, votive, pillar, container candles and the like, each of which places its own unique requirements on the wax used in the candle. For example, container candles, where the wax and wick are held in a container, typically glass, metal or the like, require lower melting points, specific burning characteristics such as wider melt pools, and should desirably adhere to the container walls. The melted wax should preferably retain a consistent appearance upon resolidification.
In the past, attempts to formulate candle waxes from vegetable oil-based materials have often suffered from a variety of problems. For example, relative to paraffin-based candles, vegetable oil-based candles have been reported to exhibit one or more disadvantages such as cracking, air pocket formation, and a natural product odor associated with soybean materials. Various soybean-based waxes have also been reported to suffer performance problems relating to optimum flame size, effective wax and wick performance matching for an even burn, maximum burning time, product color integration and/or product shelf life. In order to achieve the aesthetic and functional product surface and quality sought by consumers of candles, it would be advantageous to develop new vegetable oil-based waxes that overcome as many of these deficiencies as possible.
SUMMARY
The present compositions relate to waxes for use in candles having low paraffin content and methods of producing such candles. The candles are typically formed from a triacylglycerol-based wax, such as vegetable oil-based wax, a biodegradable material produced from renewable resources. Since the candles are formed from a material with a low paraffin content and preferably are substantially devoid of paraffin, the candles are generally clean burning, emitting very little soot. The combination of low soot emission, biodegradability and production from renewable raw material makes the present candle a particularly environmentally friendly product.
The present wax is typically solid, firm but not brittle, generally somewhat malleable, has no free oil visible and is particularly good for use in forming container candles. The present waxes are also capable of providing consistent characteristics, such as appearance, upon cooling and resolidification (e.g., after being burned in a candle) of the melted wax. The wax is desirably formulated to promote surface adhesion to prevent the candle from pulling away from the container when the candle cools. In addition, it is desirable that the wax is capable of being blended with natural color additives to provide an even, solid color distribution.
The triacylglycerol-based wax which may be used to form the present candles is typically solid, firm but not brittle, generally somewhat malleable, with no free oil visible. The wax generally has a melting point of about 120 to 137° F. (circa 49 to 58° C.) and includes a triacylglycerol component and a polyol fatty acid partial ester component. The melting point is generally about 50 to 55° C. (circa 122 to 131° F.) if the wax is used in a container candle.
In general, oils extracted from any given plant or animal source comprise a mixture of triacylglycerols characteristic of the specific source. The mixture of fatty acids isolated from complete hydrolysis of the triacylglycerols and/or other fatty acid esters in a specific sample are referred herein to as the “fatty acid composition” of that sample. By the term “fatty acid composition” reference is made to the identifiable fatty acid residues in the various esters. The distribution of fatty acids in a particular oil or mixture of esters may be readily determined by methods known to those skilled in the art, e.g., via gas chromatography or conversion to a mixture of fatty acid methyl esters followed by analysis by gas chromatography.
Waxes based solely on oils with low palmitic acid (16:0) amounts tend to suffer from a number of problems. For instance, upon cooling the wax tends to segregate into separate portions giving the wax a modeled look as opposed to an even, creamy appearance. Addition of a polyol fatty acid partial ester such as a glycerol fatty acid monoester is believed to mitigate some of these drawbacks.
The wax is commonly predominantly made up of a mixture of the triacylglycerol component and the polyol fatty acid partial ester component, e.g., the wax commonly includes at least about 70 wt. % of the triacylglycerol component and about 3 to 10 wt. % of the polyol partial ester component. Typically, the triacylglycerol-based wax has an Iodine Value of about 45 to 65. The triacylglycerol component generally has a fatty acid composition which includes about 35 to 55 wt. % total of saturated fatty acids. The triacylglycerol component also generally has a fatty acid composition which includes about 45 to 60 wt. % 18:1 fatty acids. The triacylglycerol component further generally has a fatty acid composition which includes 30 to about 45 wt. % 18:0 fatty acids. Finally, the triacylglycerol component generally has a fatty acid composition which includes 5 to 13 wt. % 16:0 fatty acids.
The polyol fatty acid partial ester component can be derived from partial saponification of a vegetable-oil based material and consequently may include a mixture of two or more fatty acids. For example, the polyol fatty acid partial ester component may suitably include polyol partial esters of palmitic acid and/or stearic acid, e.g., where at least about 90 wt. % of the fatty acid which is esterified with the polyol is palmitic acid, stearic acid or a mixture thereof. Examples of suitable polyol partial esters include fatty acid partial esters of glycerol and/or sorbitan, e.g., glycerol and/or sorbitan monoesters of mixtures of fatty acids having 14 to 24 carbon atoms. More desirably, at least about 90 wt. % of the fatty acyl groups in the polyol partial esters have 16 or 18 carbon atoms. As employed herein, the term “fatty acyl group” refers to an acyl group (“—C (O) R”) which includes an aliphatic chain (linear or branched).
The triacylglycerol component may suitably be chosen to have a melting point of about 49° C. to 58° C. (circa 120° F. to 137° F.); more typically about 50° C. to 55° C. (circa 122° F. to 131° F.) when used as a container candle wax. One embodiment of such a triacylglycerol stock can be formed by blending fully hydrogenated and partially hydrogenated vegetable oils to produce a blend with an Iodine Value of about 45 to 65 and the desired melting point. For example, a suitable triacylglycerol stock can be formed by blending appropriate amounts of fully hydrogenated soybean oil with a partially hydrogenated soybean oil having an Iodine Value o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Triacylglycerol based wax for use in container candles does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Triacylglycerol based wax for use in container candles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Triacylglycerol based wax for use in container candles will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3246588

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.