Fuel and related compositions – Candle composition
Reexamination Certificate
2002-11-12
2004-08-10
Toomer, Cephia D. (Department: 1714)
Fuel and related compositions
Candle composition
C431S288000
Reexamination Certificate
active
06773469
ABSTRACT:
BACKGROUND
For a long time, beeswax was has been in common usage as a natural wax for candles. Over one hundred years ago, paraffin came into existence, in parallel with the development of the petroleum refining industry. Paraffin is produced from the residue leftover from refining gasoline and motor oils. Paraffin was introduced as a bountiful and low cost alternative to beeswax, which had become more and more costly and in more and more scarce supply.
Today, paraffin is the primary industrial wax used to produce candles. Conventional candles produced from a paraffin wax material typically emit a smoke and can produce a bad smell when burning. In addition, a small amount of particles (“particulates”) can be produced when the candle burns. These particles may affect the health of a human when breathed in.
Accordingly, it would be advantageous to have other materials which can be used to form clean burning base wax for forming candles. If possible, such materials would preferably be biodegradable and be derived from renewable raw materials. The candle base waxes should preferably have physical characteristics, e.g., in terms of melting point, hardness and/or malleability, that permit the material to be readily formed into candles having a pleasing appearance and/or feel to the touch, as well as having desirable olfactory properties.
In the past, attempts to formulate candle waxes from vegetable oil-based materials have often suffered from a variety of problems. For example, relative to paraffin-based candles, vegetable oil-based candles have been reported to exhibit one or more disadvantages such as cracking, air pocket formation, product shrinkage and a natural product odor associated with soybean materials. Various soybean-based waxes have also been reported to suffer performance problems relating to optimum flame size, effective wax and wick performance matching for an even burn, maximum burning time, product color integration and/or product shelf life. In order to achieve the aesthetic and functional product surface and quality sought by consumers of candles, it would be advantageous to develop new vegetable oil-based waxes that overcome as many of these deficiencies as possible.
SUMMARY
The present compositions relate to waxes for candles having low paraffin content and methods of producing such candles. The candles are typically formed from a triacylglycerol-based wax, such as vegetable oil-based wax, a biodegradable material produced from renewable resources. Since the candles are formed from a material with a low paraffin content and preferably are substantially devoid of paraffin, the candles are generally clean burning, emitting very little soot. The combination of low soot emission, biodegradability and production from renewable raw material makes the present candle a particularly environmentally friendly product.
The present wax is particularly useful for forming pillar candles. The wax is desirably formulated to inhibit surface adhesion to facilitate release of a candle from its mold in the production of candles. Good mold release is an important economic consideration in the manufacture of candles, allowing rapid production. In addition, it is desirable that the wax is capable of being blended with natural color additives to provide an even solid color distribution.
The triacylglycerol-based wax which may be used to form the present candles is typically solid, firm but not brittle, generally somewhat malleable, with no free oil visible. The wax generally has a melting point of about 131 to 151° F. (circa 55 to 65° C.) and includes a triacylglycerol component and a polyol fatty acid partial ester component.
In general, oils extracted from any given plant or animal source comprise a mixture of triacylglycerols characteristic of the specific source. The mixture of fatty acids isolated from complete hydrolysis of the triacylglycerols and/or other fatty acid esters in a specific sample are referred herein to as the “fatty acid composition” of that sample. By the term “fatty acid composition” reference is made to the identifiable fatty acid residues in the various esters. The distribution of fatty acids in a particular oil or mixture of esters may be readily determined by methods known to those skilled in the art, e.g., via gas chromatography or conversion to a mixture of fatty acid methyl esters followed by analysis by gas chromatography.
The wax is commonly predominantly made up of a mixture of the triacylglycerol component and the polyol fatty acid partial ester component, e.g., the wax commonly includes at least about 70 wt. % of the triacylglycerol component and about 10 to 30 wt. % of the polyol partial ester component. Desirably, the triacylglycerol-based wax has an Iodine Value of at least about 10 and the Iodine Value is generally less than 20. The triacylglycerol component generally has a fatty acid composition which includes about 75 to 85 wt. % saturated fatty acids. Generally, the triacylglycerol component also has a fatty acid composition which includes at least 15 wt. % 18:1 fatty acids and less than 30 wt. % 18:1 fatty acids. The triacylglycerol component generally also has a fatty acid composition which includes about 60 to 80 wt. % 18:0 fatty acids. Finally, the triacylglycerol component generally has a fatty acid composition which includes 5 to 15 wt. % 16:0 fatty acids.
The polyol fatty acid partial ester component can be derived from partial saponification of a vegetable-oil based material and consequently may include a mixture of two or more fatty acids. For example, the polyol fatty acid partial ester component may suitably include polyol partial esters of palmitic acid and/or stearic acid, e.g., where at least about 90 wt. % of the fatty acid which is esterified with the polyol is palmitic acid, stearic acid or a mixture thereof. Examples of suitable polyol partial esters include fatty acid partial esters of glycerol and/or sorbitan, e.g., glycerol and/or sorbitan monoesters of mixtures of fatty acids having 14 to 24 carbon atoms. More desirably, at least about 90 wt. % of the fatty acyl groups in the polyol partial esters have 16 or 18 carbon atoms. As employed herein, the term “fatty acyl group” refers to an acyl group (“—C(O)R”) which includes an aliphatic chain (linear or branched).
The triacylglycerol component may suitably be chosen to have a melting point of about 135 to 150° F. (circa 57 to 65° C.). One embodiment of such a triacylglycerol stock can be formed by blending fully hydrogenated and partially hydrogenated vegetable oils to produce a blend with an Iodine Value of about 15 to 25 and the desired melting point. For example, a suitable triacylglycerol stock can be formed by blending appropriate amounts of fully hydrogenated soybean oil with a partially hydrogenated soybean oil having an Iodine Value of about 60 to 75. As used herein, a “fully hydrogenated” vegetable oil refers to a vegetable oil which has been hydrogenated to an Iodine Value of no more than about 5. The term “hydrogenated” is used herein to refer to fatty acid ester-based stocks that are either partially and fully hydrogenated. Instead of employing a highly hydrogenated vegetable oil, a highly unsaturated triacylglycerol material derived from precipitating a hard fat fraction from a vegetable oil may be employed. Hard fat fractions obtained in this manner are predominantly composed of saturated triacylglycerols.
It is generally advantageous to minimize the amount of free fatty acid(s) in the triacylglycerol-based wax. Since carboxylic acids are commonly somewhat corrosive, the presence of fatty acid(s) in a triacylglycerol-based wax can increase its irritancy to skin. The present triacylglycerol-based wax generally has free fatty acid content (“FFA”) of no more than about 1.0 wt. % and, preferably no more than about 0.5 wt. %.
It has been reported that a candle with a string-less wick can be formed by suspending fine granular or powdered material, such as silica gel flour or wheat fiber in a vegetable oil such as soybean oil, cottonseed oil and/or palm oil. The inc
Cargill Incorporated
Foley & Lardner
Toomer Cephia D.
LandOfFree
Triacylglycerol based wax for use in candles does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Triacylglycerol based wax for use in candles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Triacylglycerol based wax for use in candles will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3319625