Treatments and markers for cancers of the central nervous...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S006120, C536S023100

Reexamination Certificate

active

06680172

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to novel cancer markers and compositions and methods for cancer therapies. For example, the present invention provides for the detection of gene expression of particular marker genes as indicative of cancers, while control of said gene expression provides for intervention in cancer therapies and, in particular, glioma therapies.
BACKGROUND OF THE INVENTION
The diagnosis of a brain or spinal cord tumor often comes as a shock, leaving confusion, uncertainty, fear, or even anger in its wake. Brain and spinal cord tumors are abnormal growths of tissue found inside the skull or the bony spinal column. The word tumor is used to describe both abnormal growths that are new (neoplasms) and those present at birth (congenital tumors). No matter where they are located in the body, tumors are usually classed as benign (or non-cancerous) if the cells that make up the growth are similar to other normal cells, grow relatively slowly, and are confined to one location. Tumors are called malignant (or cancerous) when the cells are very different from normal cells, grow relatively quickly, and can spread easily to other locations.
In most parts of the body, benign tumors are not particularly harmful. This is not necessarily true in the brain and spinal cord, which are the primary components of the central nervous system (CNS). Because the CNS is housed within rigid, bony quarters (i.e., the skull and spinal column), any abnormal growth can place pressure on sensitive tissues and impair function. Also, any tumor located near vital brain structures or sensitive spinal cord nerves can seriously threaten health. A benign tumor growing next to an important blood vessel in the brain does not have to grow very large before it can block blood flow. Additionally, if a benign tumor is found deep inside the brain, surgery to remove it may be very risky because of the chances of damaging vital brain centers.
When newly formed tumors begin within the brain or spinal cord, they are called primary tumors. Primary CNS tumors rarely grow from neurons (i.e., nerve cells that perform the nervous system's important functions) because once neurons are mature they no longer divide and multiply. Instead, most tumors are caused by out-of-control growth among cells that surround and support neurons. Primary CNS tumors, such as gliomas and meningiomas, are named by the types of cells they contain, their location, or both.
In a small number of individuals, primary tumors may result from specific genetic diseases, such as neurofibromatosis and tuberous sclerosis, or exposure to radiation or cancer-causing chemicals. Although smoking, alcohol consumption, and certain dietary habits are associated with some types of cancers, they have not been linked to primary brain and spinal cord tumors. In fact, the cause of most primary brain and spinal cord tumors remains a mystery. Brain and spinal cord tumors are largely not preventable at this time and many tumors are associated with poor prognoses. For example, for brain stem gliomas the overall median survival time of patients in studies has been 44 to 74 weeks.
Studies suggest that new brain tumors arise in more than 40,000 Americans each year. About half of these tumors are primary, and the remainder are metastatic. Individuals of any age can develop a brain tumor. In fact, they are the second most common cause of cancer-related death in people up to the age of 35, with a slight peak in occurrence among children between the ages of 6 and 9. However, brain tumors are most common among middle-aged and older adults. People in their 60s face the highest risk. Each year 1 of every 5,000 people in this age group develops a brain tumor. Spinal cord tumors are less common than brain tumors with about 10,000 Americans developing primary or metastatic spinal cord tumors each year. Although spinal cord tumors affect people of all ages, they are most common in young and middle-aged adults.
A) Detection
Brain and spinal cord tumors cause many diverse symptoms, which can make detection tricky. Whatever specific symptoms a patient has, the symptoms generally develop slowly and worsen over time. The brain orchestrates behavior, movement, feeling, and sensation. It controls automatic functions like breathing and heartbeat. Many of these important functions are controlled by specialized brain areas. For example, the brain's left and right hemispheres jointly control hearing and vision; the front part of each hemisphere controls voluntary movements, like writing, for the opposite side of the body; and the brain stem is responsible for basic life-sustaining functions, including blood pressure, heartbeat, and breathing. As a result, brain tumors can cause a bewildering array of symptoms depending on their size, type, and location. Certain symptoms are quite specific because they result from damage to particular brain areas. Other, more general symptoms are triggered by increased pressure within the skull as the growing tumor encroaches on the brain's limited space or blocks the flow of cerebrospinal fluid (fluid that bathes the brain and spinal cord). Some of the more common symptoms of a brain tumor include headaches, seizures, nausea, vomiting, vision and hearing problems, behavioral and cognitive symptoms, motor problems, and balance problems. Common symptoms that result from spinal chord tumors include: pain, sensory changes, and motor problems.
Once a physician suspects a brain or spinal cord tumor because of a patient's medical history and symptoms, a variety of further tests are available for diagnosing the tumor. The first test is often a traditional neurological exam. A neurological exam checks eye movement, eye reflexes, and pupil reaction, reflexes, hearing sensation, movement, balance, and coordination. The next step in diagnosing brain tumors often involves X-rays or special imaging techniques and laboratory tests that can detect the presence of a tumor and provide clues about its location and type. Special imaging techniques, especially computed tomography (CT) and magnetic resonance imaging (MRI), have dramatically improved the diagnosis of CNS tumors in recent years. In many cases, these scans can detect the presence of a tumor even if it is less than half-an-inch across. However, the equipment is expensive and complex and such imaging techniques can miss tumors (e.g., small tumors), particularly at early stages where treatment is more likely to succeed. Such equipment also does not provide information relating to the morphological identity of the tumor. A third imaging technique called positron emission tomography (PET) provides a picture of brain activity rather than structure by measuring levels of injected glucose that has been labelled with a radioactive tracer. Glucose is used by the brain for energy. Detectors placed around the head can spot the labelled glucose, and a computer uses the pattern of glucose distribution to form an image of the brain. Since malignant tissue uses more glucose than normal tissue, it shows up on the scan as brighter or lighter than surrounding tissue. Currently, PET is not widely used in tumor diagnosis, in part because the technique requires very elaborate, expensive equipment, including a cyclotron to create the radioactive glucose.
Laboratory tests commonly used include the electroencephalogram (or EEG) and lumbar puncture, also known as the spinal tap. The EEG uses special patches placed on the scalp or fine needles placed in the brain to record electrical currents inside the brain. This recording can help the physician see telltale patterns in the brain's electrical activity that suggest a brain tumor. Repeated EEG recordings can be particularly helpful in determining whether an abnormality in brain activity is getting worse. In lumbar puncture, doctors obtain a small sample of cerebrospinal fluid. This fluid can be examined for abnormal cells or unusual levels of various compounds that suggest a brain or spinal cord tumor. However, these techniques are limited in the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Treatments and markers for cancers of the central nervous... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Treatments and markers for cancers of the central nervous..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Treatments and markers for cancers of the central nervous... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3230006

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.