Treatment using implantable devices

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Thermal applicators

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C607S116000

Reexamination Certificate

active

06668197

ABSTRACT:

This invention relates to the treatment of human or non-human animals by means of implantable devices. It is applicable to a variety of treatments but will be described hereinafter with particular reference to hyperthermis treatment, it being understood that the invention is not restricted to this type of treatment Also, the invention will be described on relation to the treatment of human patients, although it is to be understood that the treatments involved may also be applied to non-human animals.
Microwave heating of deep seated tumours has conventionally been achieved by feeding energy from the outside of the body through a small diameter coaxial cable which is terminated in an applicator in the form of a monopole or dipole radiating element. Both the cable and the applicator are inserted close to or within the tumour area either interstitially or through natural orifices into body cavities. In general, the heating pattern is ellipsoidal with the major axis along the applicator axis. Such systems are awkward to use and immobilise the patient. It is therefore desirable to generate an alternative system in which treatment of the patient can be achieved under less distressing conditions and which does not restrict patient mobility.
According to one aspect of the present invention, there is provided a method of performing treatment, e.g. hyperthermia treatment, in a human or non-human animal, which comprises the steps of: (a) implanting into the body of the human or non-human animal (i) a device capable of receiving electromagnetic radiation in the microwave frequency range and of generating and/or storing electrical energy therefrom; and (ii) an electrically operated therapeutic device arranged to receive electrical energy from said device; and (b) directing electromagnetic radiation in the microwave frequency range from a source external to the body being treated towards the position of the implanted device so as to generate electrical energy to actuate said therapeutic device.
According to another aspect of the invention, there is provided apparatus for providing hyperthermis treatment, which comprises a first assembly which, in use, is implanted within the body of the patient and a second assembly which, in use, is located outside the body of the patient, characterised in that:
(A) said first assembly comprises:
(i) a plurality of antenna elements for the delivery of thermal energy to the site or sites where hyperthermia treatment is to be given;
(ii) a plurality of inner coupling elements corresponding in number to said antenna elements and each inner coupling element being associated with a given antenna element;
(iii) an electrical conductor connecting each antenna element with its respective inner coupling element;
and
(B) said second assembly comprises:
(i) a plurality of external coupling elements corresponding in number to the inner coupling elements of said first assembly and each external coupling element being associated with a give inner coupling element;
(ii) a power generating circuit adapted to deliver electromagnetic energy to said external coupling elements; and
(iii) an electronic control system for controlling the operation of the apparatus,
further characterized in that, when the apparatus is in operation:
(i) each of said external coupling elements is arranged to transmit electromagnetic radiation towards its corresponding inner coupling element, and each of said inner couple elements is arranged to receive electromagnetic radiation; and
(ii) each of said antenna elements is arranged to covert electromagnetic radiation received by its respective inner coupling element into heat.
Preferably, the implanted device is a rectenna. Further description of the invention will be made with reference to this preferred embodiment.
The rectenna will generally be associated with an implanted electrically operated therapeutic device. Non-limiting examples of the implanted therapeutic device include:
device for delivering heat in a localised manner, e.g. to treat a tumour;
a pump for assisting blood flow;
a stent for ensuring lumen patency of hollow viscars, and ducts, e.g. oesophagus, bile duct, pancreatic duct, colon, stomach, rectum and urethra;
a pressure sensor for detecting localized pressures, e.g. within a stent of the type just mentioned;
a flow meter for determining passage of a fluid through a duct;
a pacemaker;
a detector for a particular chemical or biological material or species, e.g. blood or tissue chemical content or cellular content;
or combinations of such devices.
Typically, these devices require electrical energy for them to function; in some cases, the electrical energy is converted into thermal energy. For example, when used in hyperthermia treatment, the implanted system may comprise a microwave antenna array employing one or more needle-like dipole elements which are implanted into a deep seated tumour. By directing electromagnetic radiation into the tumour, sufficient heat can be generated to kill tumour cells within a defined volume adjacent to the array. Preferably, the implanted array will carry one or more temperature sensors to provide information on temperature build up within the cancer during treatment. The provision of temperature information makes it possible to provide automatic control of the treatment process, ensuring proper administration of microwave energy and overall management of the therapy.
Localised heating can be of benefit in several situations, for example: (a) to stop bleeding, e.g. of a tumour or in a non-malignant condition such as benign ulcers of the stomach or duodenum. The therapeutic device may thus be an electrode or an assembly of electrodes which is activated by the rectenna and generates localised heating of adjacent tissues. An electrode of this sort may, for example, be positioned around a tumour of the prostate, colon, bladder, stomach or lung; it may likewise be positioned adjacent to a duodenal or stomach ulcer.
Other sensors may be incorporated as desired; these can be used, for example, to assess the progress of the treatment.
Alternatively, the implanted system could be a rectenna associated with a metallic stent in, for example, the pancreatic duct of a patient suffering from pancreatic cancer, and the power received by the rectenna is used to heat the stent which in turn transfers heat to the malignant tissues of the organ.
The invention also finds application in surgical procedures involving balloon dilatation and/or coronary stenting. These surgical procedures tend to encourage the formation of fibrous tissue which can lead to stenosis, e.g. blockage of a blood vessel after removal of the dilatation equipment. In accordance with this invention, such dangers of stenosis may be removed or mitigated by heating the stent during a coronary stenting procedure or by applying heat adjacent to a region undergoing balloon dilatation.
The control of deeply embedded cancers, e.g. within the liver, is problematical. By means of the present invention, it is possible to perform a series of hyperthermia treatments over an extended period of time, thereby providing what is believed to be more effective treatment. In addition, the treatment regimen may be conducted with minimal inconvenience to the patient once the implantation operation has been completed.
An important aspect of the invention is that it enables wireless transmission of electrical energy through transcutaneous tissue at a frequency which is compatible with localised hyperthermia treatment. Currently available systems for transcutaneous transmission of energy generally operate at low frequencies (up to 500 Khz) and are based on inductive coupling between planar coils. Such systems can transfer power levels of up to 40 watts at 70-80% efficiency. These systems, however, are unsuitable for localised hyperthermia treatment which employs microwave applicators because of the need to provide frequency up-conversion within the implanted component of the system; this is an inefficient step which degrades the overall efficiency of the power transfer syst

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Treatment using implantable devices does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Treatment using implantable devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Treatment using implantable devices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3095870

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.