Treatment of ultrahigh molecular weight polyolefin to improve ad

Coating processes – Electrical product produced – Welding electrode

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

427322, 427354, 4273935, 428518, 430271, 430537, 430538, B05D 306

Patent

active

050395491

ABSTRACT:
Method and apparatus for treating ultrahigh molecular weight, high strength polyolefin to improve its adhesive bonding to a resin such as epoxy, vinyl ester, polyester, polyurethane, polyolefin or thermoplastic rubber are provided. The method includes the steps of soaking the polyolefin in a first solution comprising (i) an aromatic ketone photosensitizer, and (ii) a first solvent selected from the group consisting of a benzene derivative, an alkyl halide, and a cyclic alkane; removing any excess first solvent; coating the surface of the polyolefin with a second solution comprising (i) about 15 to 70 weight percent of a monomer independently selected from the aforementioned group, (ii) about 0.25 to 5 weight percent of an aromatic ketone photosensitizer, and (iii) about 25 to 84.75 weight percent of a solvent selected from the group consisting of a low boiling point alcohol and a low boiling point ketone; exposing the coated polyolefin to a sufficient amount of irradiation to surface graft the monomer of the second solution to the polyolefin; washing the treated polyolefin; and drying for suitable packaging. The apparatus features an irradiation treatment chamber through which the polyolefin is passed in a cooled tube for treatment.

REFERENCES:
patent: 2999056 (1961-09-01), Tanner
patent: 4410586 (1983-10-01), Ladizesky et al.
patent: 4421780 (1983-12-01), Buzio et al.
patent: 4600649 (1986-07-01), Leo
Kubota, H., Koike, N., and Ogiwara, Y., "Location of Methacrylic Acid-Grafted Chains Introduced into Polyolefin Films by Means of Photografting", J. Polymer Sci., Letters Ed., 25 273, 1987.
Ogiwara, Y., Kobayashi, K., and Kubota, H., "Effect of Binary Sensitizers on Photografting of Methacrylic Acid on Low-Density Polyethylene Film", J. Polymer Sci., Polymer Letters, vol. 24, 511-517, 1986.
Tazuke, S., and Kimura, H., "Surface Photografting. I. Graft Polymerization of Hydrophilic Monomers onto Various Polymer Films", J. Polymer Sci., Polymer Letters Ed., 16, 497, 1978.
Ogiwara, V., Kanda, M., Takumi, M., and Kubota, H., "Photosensitized Grafting on Polyolefin Films in Vapor and Liquid Phases", J. Polymer Sci., Polymer Letters Ed., 19, 457, 1981.
Tazuke, S., and Kimura, H., "Modification of Polypropylene Film Surface by Graft Polymerization of Acrylamide", Makromol. Chem., 179, 2603, 1978.
Oster, G., Oster, G. K., and Moroson, H., "Ultraviolet Induced Crosslinking and Grafting of Solid High Polymers", J. Polymer Sci., 35, 671, 1959.
Angier, D. J. in "Chemical Reactions of Polymers", Interscience Publishers, New York, 19, p. 1028.
Kubota et al., "Vapor Phase Photografting of Maleic anhydride on Polymer Films", J. Polymer Sci., Polymer Letters Ed., 21, 367-372, 1983.
Ogiwara et al., "Effect of Solvent on Vapor Phase Photografting of Acrylic Acid on Polymer films", J. Polymer Sci., Polymer Letters Ed., 20, 17-21, 1982.
Pappas, S. P., in UV Curing: Science and Technology, ed. S. P. Pappas, Technology Marketing Corp., Connecticut 1978.
Oster, G., and Shibata, O., "Graft Copolymer of Polyacrylamide and Natural Rubber Produced by Means of Ultraviolet Light", J. Polymer Sci., 26, 233, 1957.
Davis, N. and Garnett, J., "Comparison of Photosensitized and Gamma-Ray-Induced Graft Copolymerization of Monomers to Cellulose", J. Polymer Science Symposium, 55, 287-301, 1976.
Chapiro, A., "Synthese des copolymeres greffes a partir des polymeres ayant subi l'action des radiations ionisantes. II. Influences des conditions de conditions de preirradiation sur la cinetique du greffage sur le polyehtylene", J. Polymer Science, 34, 439, 1959.
Brewis, D. M., and Briggs, D., "Adhesion to polyethylene and polypropylene", Polymer, 22, 7, 1981.
Ballantine, D., Glines, A., Adler, G., and Metz, D. J., "Graft Copolymerization by Pre-Irradiation Technique", J. Polymer Sci., 34, 419, 1959.
Miller, A. A., Lawton, E. J., and Balwit, J. S., "The Radiation Chemistry of Hydrocarbon Polymers: Polyethylene, Polymethylene and Octacosane", J. Phys. Chem., 60, 599, 1956.
Hoffman, A. S., Gilliland, G. R., Merrill, E. W. and Stockmayer, W. H., "Irradiation Grafting of Styrene to High Pressure and Low Pressure Polyethylene Films", J. Polymer Sci., 34, 461, 1959.
Yamakita, H. and Hayakawa, K., "alternating Copolymer Grafting Onto Polymer Films by a Vapor-Phase Grafting Technique", J. Polymer Sci., Polymer Edition, vol. 10, 823-828, 1972.
Burchill, P. J., Pinkerton, D. M. and Stacewicz, R. H., "Polymer Photostabilization by Surface Grafting", J. Polymer Sci. Symposium, 55, 303, 1976.
Briggs, D. in "Surface Analysis and Pretreatment of Plastics and Metals", Chapter 9, Applies Science Publishers, London, 1986.
Burchill, P. J. and Pinkerton, D. M., "Polymer Photostabilization by Surface Grafting", J. Polymer Sci., Symposium No. 55, 186-193, 1976.
Drzal, L. T., Rich, M. J. and Lloyd, P. F., "Adhesion of Graphite Fibers to Epoxy Matrices: I. The Role of Fiber Surface Treatment", J. Adhseion, 16, 1, 133, 1982.
Drzal, L. T., Rich, M. J. and Lloyd, P. F., "Adhesion of Graphite Fibers to Epoxy Matrices: II. The Effect of Fiber Finish", J. Adhesion, vol. 16, 133-152, 1983.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Treatment of ultrahigh molecular weight polyolefin to improve ad does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Treatment of ultrahigh molecular weight polyolefin to improve ad, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Treatment of ultrahigh molecular weight polyolefin to improve ad will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1526547

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.