Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...
Reexamination Certificate
2001-03-07
2003-07-22
Swartz, Rodney P (Department: 1645)
Chemistry: molecular biology and microbiology
Measuring or testing process involving enzymes or...
Involving antigen-antibody binding, specific binding protein...
C424S009100, C424S009200, C424S130100, C424S164100, C424S184100, C424S185100, C424S234100, C424S241100, C424S278100, C435S252200, C436S501000, C530S300000, C530S350000
Reexamination Certificate
active
06596504
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to methods for the treatment and/or prophylaxis of diseases caused by tissue-adhering pilus-forming bacteria by interaction with the binding between pilus subunits and periplasmic chaperones. The invention further relates to methods for identifying/designing substances capable of interacting with periplasmic chaperones and methods for identifying binding sites in periplasmic chaperones. Finally, the invention relates to novel substances capable of interacting with periplasmic chaperones as well as pharmaceutical preparations comprising substances capable of interacting with periplasmic chaperones.
BACKGROUND OF THE INVENTION
Pathogenic Gram-negative bacteria cause a number of pathological conditions such as bacteraemia, bacteria-related diarrhoea, meningitis and (very commonly) urinary tract infections, i.a. pyelonephritis, cystitis, urethritis etc.
Urinary tract infections are one of the major causes of morbidity in females. Despite the overall importance of urinary tract infections in women, there have been few efforts to apply novel strategies in order to treat and/or prevent these diseases. Commonly, conventional antibiotics are used to treat these infections, such as treatment with penicillins, cephalorins, aminoglycosides, sulfonamides and tetracyclines; in the special case of urinary tract infections, urinary antiseptics such as nitrofurantoin and nalidixic acid are employed, too. However, emerging antibiotic resistance will in the future hamper the ability to successfully treat urinary tract infections. Multiple antibiotic resistance among these uropathogens is increasing. It has been estimated that the annual cost for evaluation and treatment of women with urinary tract infections exceeds one billion dollars. In addition, approximately one-fourth of the yearly 4 billion dollar cost attributed to nosocomial infections is a consequence of urinary tract infections. Among the causative agents of urinary tract infections,
Escherichia coli
clearly predominates among Gram-negative bacteria.
Pathogenic gram negative bacteria, notably
Escherichia coli, Haemophilus influenzae, Salmonella enteriditis, Salmonella typhimurium, Bordetella pertussis, Yersinia pestis, Yersinia enterocolitica, Helicobacter pylon,
and
Klebsiella pneumoniae
owe part of their infectability to their ability to adhere to various epithelial tissues. Thus, e.g.
E. coli
adhere to the epithelial cells in the upper urinary tract in spite of the flushing effect of unidirectional flow of urine from the kidneys.
As indicated above, the above mentioned bacteria are involved in a variety of diseases: Urinary tract infections (
E. coli
), acute diarrhoea (
E. coli, Y. enterocolitica
and Salmonella spp), meningitis (
E. coli
and
H. influenzae
), whooping cough (
B. pertussis
), plague (
Y. pestis
), pneumonia and other respiratory tract infections (
K. pneumoniae, H. influenzae
) and peptic ulcer (
H. pylori
).
The initiation and persistence of many bacterial infections such as those described above is thought to require the presentation of adhesins on the surface of the microbe in accessible configurations which promote binding events that dictate whether extracellular colonization, internalization or other cellular responses will occur. Adhesins are often components of the long, thin, filamentous, heteropolymeric protein appendages known as pili, fimbriae, or fibrillae (these three terms will be used interchangeably herein). The bacterial attachment event is often the result of a stereo-chemical fit between an adhesin frequently located at the pilus tip and specific receptor architectures on host cells, often comprising carbohydrate structures in membrane associated glycoconjugates.
Uropathogenic strains of
E. coli
express P and type 1 pili that bind to receptors present in uroepithelial cells. The adhesin present at the tip of the P pilus, PapG (
p
ilus
a
ssociated
p
olypeptide G), binds to the Gala(1-4)Gal moiety present in the globoseries of glycolipids, while the type 1 adhesin, FimH, binds D-mannose present in glycolipids and glycoproteins. Adhesive P pili are virulence determinants associated with pyelonephritic strains of
E. coli
whereas type 1 pili appear to be more common in
E. coli
causing cystitis. At least eleven genes are involved in the biosynthesis and expression of functional P pili; the DNA sequence of the entire pap gene cluster has been determined. P pili are composite heteropolymeric fibers consisting of flexible adhesive fibrillae joined end to end to pilus rods. The pilus rod is composed of repeating PapA protein subunits arranged in a right handed helical cylinder. Tip fibrillae which extend from the distal ends of each pilus rod were found to be composed mostly of repeating subunits of PapE arranged in an open helical conformation. The PapG adhesin was localized to the distal ends of the tip fibrillae, a location which is assumed to maximize its ability to recognize glycolipid receptors on eukaryotic cells. Two minor pilus components, PapF and PapK, are specialized adaptor proteins found in the tip fibrillum. PapF links the adhesin moiety to the fibrillum while PapK joins the fibrillum to the pilus rod. The composite architecture of the P pilus fiber reveals the strategy used by uropathogenic
E. coli
to present the PapG adhesin to eukaryotic receptors. The rigid PapA rod extends the adhesin away from interference caused by LPS and other components at the bacterial cell surface while the flexible fibrillum allows PapG steric freedom to recognize and bind to the digalactoside moiety on the uroepithelium. With a few exceptions, the structural organization of type 1 pili is very similar to that described for P pili. In type 1 pili, the mannose binding tibrillar tip adhesin is known as FimH.
The assembly of virulence-associated pili in Gram-negative pathogens requires the function of periplasmic chaperones. Molecular chaperones are vital components of all living cells, prokaryotic and eukaryotic. Chaperones serve a variety of cellular functions including folding, import and export of proteins in various cellular compartments (Gething and Sambrook, 1992). Thus, a periplasmic chaperone is a molecular chaperone which exerts its action in the periplasmic space in bacteria.
PapD and FimC are the periplasmic chaperones that mediate the assembly of P and type 1 pili, respectively. Detailed structural analyses have revealed that PapD is the prototype member of a conserved family of periplasmic chaperones in Gram-negative bacteria. These chaperones have a function which is part of a general strategy used by bacteria to cap and partition interactive subunits imported into the peri-plasmic space into assembly competent complexes, making non-productive interactions unfavourable. Determination of the three-dimensional structure of PapD revealed that it consists of two immunoglobulin-like domains oriented in a boomerang shape such that a cleft is formed. PapD binds to each of the pilus subunit types as they emerge from the cytoplasmic membrane and escorts them in assembly-competent, native-like conformations from the cytoplasmic membrane to outer membrane assembly sites comprised of PapC. PapC has been termed a molecular usher since it receives chaperone-subunit complexes and incorporates, or ushers, the subunits from the chaperone complex into the growing pilus in a defined order.
With the exception of the type IV class of pili, all other genetically well characterized pilus systems in Gram-negative prokaryotes contain a gene analogous to papD (Normark et al., 1986; Hultgren et al. 1991); cf. also table A. FanE, faeE, sfaE, ClpE and f17-D have been sequenced (Lintermans, 1990; Schmoll et al., 1990; Bertin Y et al., 1993; Bakker et al., 1991) and encode pilus chaperones required for the assembly of K99, K88, S and F17 pili, respectively, in
E. coli
. The assembly of
Klebsiella pneumoniae
type 3 pili and
Haemophilus influenzae
type b pili requires the mrkb and hifb gene products, respectively (Gerlach et al., 1989,; Allen et al., 199
Harris Mark
Hultgren Scott
Jones Charles Hal
Kihlberg Jan
Kuehn Meta
Burns Doane Swecker & Mathis L.L.P.
Swartz Rodney P
Washington University
LandOfFree
Treatment of prophylaxis of diseases caused by pilus-forming... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Treatment of prophylaxis of diseases caused by pilus-forming..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Treatment of prophylaxis of diseases caused by pilus-forming... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3035982