Treatment of inner ear hair cells

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S003100, C530S303000, C530S399000

Reexamination Certificate

active

06593290

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This application relates to inducing, promoting, or enhancing the growth, proliferation, regeneration, or survival of inner ear tissue, particularly inner ear epithelial hair cells. In addition, this application provides methods, compositions and devices for prophylactic and therapeutic treatment of inner ear disorders and conditions, particularly hearing impairments. The methods comprise administration of insulin-like growth factor-I (IGF-1) and/or fibroblast growth factor-2 (FGF-2), or their agonists.
2. Description of Related Disclosures
Hearing impairments are serious handicaps which affect millions of people. Hearing impairments can be attributed to a wide variety of causes, including infections, mechanical injury, loud sounds, aging, and chemical-induced ototoxicity that damages neurons and/or hair cells of the peripheral auditory system. The peripheral auditory system consists of auditory receptors, hair cells in the organ of Corti, and primary auditory neurons, the spiral ganglion neurons in the cochlea. Spiral ganglion neurons (“SGN”) are primary afferent auditory neurons that deliver signals from the peripheral auditory receptors, the hair cells in the organ of Corti, to the brain through the cochlear nerve. The eighth nerve connects the primary auditory neurons in the spiral ganglia to the brain stem. The eight nerve also connects vestibular ganglion neurons (“VGN”), which are primary afferent sensory neurons responsible for balance and which deliver signals from the utricle, saccule and ampullae of the inner ear to the brain, to the brainstem. Destruction of primary afferent neurons in the spiral ganglia has been attributed as a major cause of hearing impairments. Damage to the peripheral auditory system is responsible for a majority of hearing deficits (Dublin, 1976; Rybak, 1986; Lim, 1986; Pryor, 1994).
Hearing loss or impairment is a common occurrence for mammals. Impairment anywhere along the auditory pathway from the external auditory canal to the central nervous system may result in hearing loss. Auditory apparatus can be divided into the external and middle ear, inner ear and auditory nerve and central auditory pathways. While having some variations from species to species, the general characterization is common for all mammals. Auditory stimuli are mechanically transmitted through the external auditory canal, tympanic membrane, and ossicular chain to the inner ear. The middle ear and mastoid process are normally filled with air. Disorders of the external and middle ear usually produce a conductive hearing loss by interfering with this mechanical transmission. Common causes of a conductive hearing loss include obstruction of the external auditory canal, as can be caused by aural atresia or cerumen; thickening or perforation of the tympanic membrane, as can be caused by trauma or infection; fixation or resorption of the components of the ossicular chain; and obstruction of the Eustachian tube, resulting in a fluid-filled middle-ear space. Auditory information is transduced from a mechanical signal to a neurally conducted electrical impulse by the action of neuro-epithelial cells (hair cells) and SGN in the inner ear. All central fibers of SGN form synapses in the cochlear nucleus of the pontine brain stem. The auditory projections from the cochlear nucleus are bilateral, with major nuclei located in the inferior colliculus, medial geniculate body of the thalamus, and auditory cortex of the temporal lobe. The number of neurons involved in hearing increases dramatically from the cochlea to the auditory brain stem and the auditory cortex. All auditory informnation is transduced by a limited number of hair cells, of which the so-called inner hair cells, numbering a comparative few, are critically important, since they form synapses with approximately 90 percent of the primary auditory neurons. By comparison, at the level of the cochlear nucleus, the number of neural elements involved is measured in the hundreds of thousands. Thus, damage to a relatively few cells in the auditory periphery can lead to substantial hearing loss. Hence, many causes of sensorineural loss can be ascribed to lesions in the inner ear. This hearing loss can be progressive. In addition, the hearing becomes significantly less acute because of changes in the anatomy of the ear as the animal ages.
During embryogenesis, the vestibular ganglion, spiral ganglion, and the otic vesicle are derived from the same neurogenic ectoderm, the otic placode. The vestibular and auditory systems thus share many characteristics including peripheral neuronal innervations of hair cells and central projections to the brainstem nuclei. Both of these systems are sensitive to ototoxins that include therapeutic drugs, antineoplastic agents, contaminants in foods or medicines, and environmental and industrial pollutants. Ototoxic drugs include the widely used chemotherapeutic agent cisplatin and its analogs (Fleischman et al., 1975; Stadnicki et al., 1975; Nakai et al., 1982; Berggren et al., 1990; Dublin, 1976; Hood and Berlin, 1986), commonly used aminoglycoside antibiotics, e.g. gentamicin, for the treatment of infections caused by Gram-negative bacteria, (Sera et al., 1987; Hinojosa and Lemer, 1987; Bareggi et al., 1990), quinine and its analogs, salicylate and its analogs, and loop-diuretics.
The toxic effects of these drugs on auditory cells and spiral ganglion neurons are often the limiting factor for their therapeutic usefulness. For example, antibacterial aminoglycosides such as gentamicins, streptomycins, kanamycins, tobramycins, and the like are known to have serious toxicity, particularly ototoxicity and nephrotoxicity, which reduce the usefulness of such antimicrobial agents (see Goodman and Gilman's The Pharmacological Basis of Therapeutics, 6th ed., A. Goodman Gilman et al., eds; Macmillan Publishing Co., Inc., New York, pp. 1169-71 (1980) or most recent edition). Aminoglycoside antibiotics are generally utilized as broad spectrum antimicrobials effective against, for example, gram-positive, gram-negative and acid-fast bacteria. Susceptible microorganisms include Escherichia spp., Hemophilus spp., Listeria spp., Pseudomonas spp., Nocardia spp., Yersinia spp., Klebsiella spp., Enterobacter spp., Salmonella spp., Staphylococcus spp., Streptococcus spp., Mycobacteria spp., Shigella spp., and Serratia spp. Nonetheless, the aminoglycosides are used primarily to treat infections caused by gram-negative bacteria and, for instance, in combination with penicillins for the synergistic effects. As implied by the generic name for the family, all the aminoglycoside antibiotics contain aminosugars in glycosidic linkage. Otitis media is a term used to describe infections of the middle ear, which infections are very common, particularly in children. Typically antibiotics are systemically administered for infections of the middle ear, e.g., in a responsive or prophylactic manner. Systemic administration of antibiotics to combat middle ear infection generally results in a prolonged lag time to achieve therapeutic levels in the middle ear, and requires high irritial doses in order to achieve such levels. These drawbacks complicate the ability to obtain therapeutic levels and may preclude the use of some antibiotics altogether. Systemic administration is most often effective when the infection has reached advanced stages, but at this point permanent damage may already have been done to the middle and inner ear structure. Clearly, ototoxicity is a dose-limiting side-effect of antibiotic administration. For example, nearly 75% of patients given 2 grams of streptomycin daily for 60 to 120 days displayed some vestibular impairment, whereas at 1 gram per day, the incidence decreased to 25% (U.S. Pat. No. 5,059,591). Auditory impairment was observed: from 4 to 15% of patients receiving 1 gram per day for greater than 1 week develop measurable hearing loss, which slowly becomes worse and can lead to complete permanent deafness if treatment continues.
Ototoxicity is also

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Treatment of inner ear hair cells does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Treatment of inner ear hair cells, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Treatment of inner ear hair cells will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3056217

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.