Drug – bio-affecting and body treating compositions – Inorganic active ingredient containing – Heavy metal or compound thereof
Reexamination Certificate
2001-07-27
2004-02-17
Pak, John (Department: 1616)
Drug, bio-affecting and body treating compositions
Inorganic active ingredient containing
Heavy metal or compound thereof
C424S400000, C424S402000, C424S404000, C424S409000, C424S411000, C424S443000, C424S445000, C424S446000, C424S447000, C424S448000, C424S489000, C424S490000, C424S617000, C424S646000, C424S649000, C514S492000, C514S495000, C514S860000, C514S861000, C514S863000, C514S864000, C514S886000, C514S887000, C514S944000, C514S951000, C514S963000, C602S041000
Reexamination Certificate
active
06692773
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to the use of nanocrystalline noble metals for the treatment of hyperproliferative skin disorders and diseases such as psoriasis.
BACKGROUND OF THE INVENTION
In spite of many years of research on the treatment of hyperproliferative skin disorders and diseases such as psoriasis, there are still many patients suffering from such skin diseases for whom treatment regimes have been ineffective. Furthermore, many of the side effects from the medications currently prescribed for the treatment of psoriasis are problematic. Thus, there still remains a need for a safe and effective treatment for hyperproliferative skin disorders and diseases such as psoriasis and keratinization.
SUMMARY OF THE INVENTION
The inventors have discovered that nanocrystalline noble metals selected from one or more of silver, gold, platinum and palladium, are effective in the treatment of psoriasis. Preferably, these noble metals are formed with atomic disorder, such that ions, clusters, atoms or molecules of the metals are released on a sustainable basis.
The nanocrystalline forms of these noble metals may be used in any of the following formats:
i) nanocrystalline coatings of the noble metals on medical grade substrates, for example, dressings, fibers, and materials composed of for example polyethylene, high density polyethylene, polyvinylchloride, latex, silicone, cotton, rayon, polyester, nylon, cellulose, acetate, carboxymethylcellulose, alginate, chitin, chitosan and hydrofibers;
ii) gels, formulated with nanocrystalline powders of the noble metals with such materials as carboxymethylcellulose, alginate, chitin, chitosan and hydrofibers, together with such ingredients as pectin and viscosity enhancers;
iii) creams, lotions, pastes and ointments formulated with nanocrystalline powders of the noble metals, for example as emulsions or with drying emollients;
iv) liquids, formulated as solutions by dissolving nanocrystalline coatings or powders of the noble metals, for example as topical solutions, aerosols or mists;
v) powders, prepared as nanocrystalline powders of the noble metals, or as nanocrystalline coatings of the noble metals on biocompatible substrates in powder form, preferably on bioabsorbable and/or hygroscopic substrates such as:
Synthetic Bioabsorbable Polymers: for example polyesters/polyactones such as polymers of polyglycolic acid, glycolide, lactic acid, lactide, dioxanone, trimethylene carbonate etc., polyanhydrides, polyesteramides, polyortheoesters, polyphosphazenes, and copolymers of these and related polymers or monomers.
Naturally Derived Polymers:
Proteins: albumin, fibrin, collagen, elastin;
Polysaccharides: chitosan, alginates, hyaluronic acid; and
Biosynthetic Polyesters: 3-hydroxybutyrate polymers.
In the above formats, the nanocrystalline noble metals are formulated from nanocrystalline coatings or nanocrystalline powders of the nanocrystalline noble metals, or from solutions prepared by dissolving the nanocrystalline coatings or powders therein. The formulations include a therapeutically effective amount of the coatings or powders, and most preferably, the following amounts:
For coatings: 150-3000 nm thick coatings
For gels, creams and lotions: 0.01-5% by weight of the nanocrystalline noble metal powder
For liquids 0.001-1% by weight of the noble metal
Nanocrystalline coatings of the noble metals are most preferably deposited onto one or more layers of medical dressing materials which can be laminated with uncoated layers of medical dressing materials. The coatings can be prepared by known techniques for preparing nanocrystalline coatings, but are most preferably prepared by physical vapour deposition under conditions which create atomic disorder. The nanocrystalline coatings are most preferably prepared to create an interference colour so as to provide an indicator, as described in prior patent application WO 98/41095, published Sep. 24, 1998, and naming inventors R. E. Burrell and R. J. Precht.
Nanocrystalline powders of the noble metals may be prepared as nanocrystalline coatings, preferably of the above thickness, on powdered substrates such as chitin, or may be prepared as nanocrystalline coatings on a substrate such as a silicon wafer, and then scraped off as a nanocrystalline powder. Alternatively, fine grained or nanocrystalline powders of the noble metals may be cold worked to impart atomic disorder, as disclosed in prior patent application WO 93/23092, published Nov. 25, 1993, naming Burrell et al., as inventors.
As used herein and in the claims, the terms and phrases set out below have the meanings which follow.
“Metal” or “metals” includes one or more metals whether in the form of substantially pure metals, alloys or compounds such as oxides, nitrides, borides, sulphides, halides or hydrides.
“Noble metals” are silver, gold, platinum and palladium, or mixtures of such metals with same or other metals, with silver metal being the most preferred.
“Biocompatible” means non-toxic for the intended utility. Thus, for human utility, biocompatible means non-toxic to humans or human tissues.
“Sustained release” or “sustainable basis” are used to define release of atoms, molecules, ions or clusters of a noble metal that continues over time measured in hours or days, and thus distinguishes release of such metal species from the bulk metal, which release such species at a rate and concentration which is too low to be therapeutically effective, and from highly soluble salts of noble metals such as silver nitrate, which releases silver ions virtually instantly, but not continuously, in contact with an alcohol or electrolyte.
“Atomic disorder” includes high concentrations of: point defects in a crystal lattice, vacancies, line defects such as dislocations, interstitial atoms, amorphous regions, grain and sub grain boundaries and the like relative to its normal ordered crystalline state. Atomic disorder leads to irregularities in surface topography and inhomogeneities in the structure on a nanometer scale. “Normal ordered crystalline state” means the crystallinity normally found in bulk metal materials, alloys or compounds formed as cast, wrought or plated metal products. Such materials contain only low concentrations of such atomic defects as vacancies, grain boundaries and dislocations.
“Diffusion”, when used to describe conditions which limit diffusion in processes to create and retain atomic disorder, i.e. which freeze-in atomic disorder, means diffusion of atoms (adatom diffusion) and/or molecules on the surface or in the matrix of the material being formed.
“Alcohol or water-based electrolyte” is meant to include any alcohol, water, or water-based electrolyte that the anti-microbial materials of the present invention might contact in order to activate (i.e. cause the release of species of the anti-microbial metal) into same. The term is meant to include alcohols, water, gels, fluids, solvents, and tissues containing water, including body fluids (for example blood, urine or saliva), and body tissue (for example skin, muscle or bone).
“Bioabsorbable” as used herein in association includes substrates which are useful in medical devices, that is which are biocompatible, and which are capable of bioabsorption in period of time ranging from hours to years, depending on the particular application.
“Bioabsorption” means the disappearance of materials from their initial application site in the body (human or mammalian) with or without degradation of the dispersed polymer molecules.
“Colour change” is meant to include changes of intensity of light under monochromatic light as well as changes of hue from white light containing more than one wavelength.
An “interference colour” is produced when light impinges on two or more partly reflective surfaces separated by a distance which bears the right relationship to the wavelength of the light to be removed by destructive interference.
“Partly reflective” when used to describe the base or top layer materials, means that the material has a surface which reflects a portion of incident light, but wh
Burrell Robert Edward
Lam Kan
Wright John Barrymore
Fish & Richardson P.C.
Nucryst Pharmaceuticals Corp.
Pak John
LandOfFree
Treatment of hyperproliferative skin disorders and diseases does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Treatment of hyperproliferative skin disorders and diseases, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Treatment of hyperproliferative skin disorders and diseases will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3347866