Treated textile fabric

Adhesive bonding and miscellaneous chemical manufacture – Methods – Surface bonding and/or assembly therefor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C156S307100, C427S412300, C427S532000

Reexamination Certificate

active

06251210

ABSTRACT:

The present invention relates to treated textile fabrics, and more particularly to methods of treating a fabric to produce a water-repellant, stain-resistant, anti-microbial, fabric which display excellent hand and feel, and which may be used in traditional textile applications such as furniture upholstery. The present invention further pertains to textile treating compositions useful for preparing such fabrics.
BACKGROUND OF THE INVENTION
Stain resistance, water repellency and resistance to microbial growth are important in many uses of textile materials. In restaurants, for example, table cloths and seating upholstery often lack stain resistance and are subject to rapid water penetration. These properties necessitate frequent cleaning and/or replacement of such items. Although one generally views microbial growth as associated with fibers of biologic origin such as cotton, wool, linen, and silk, in the field of marine use, the high relative humidity renders even synthetic polymer textiles such as polyesters and polyamides subject to microbial growth, which is also true of many other outdoor uses.
Water repellant textile fabrics may be made by various processes. The term “water repellant” as used herein means essentially impermeable to water, i.e. treated textile can support a considerable column of water without water penetration through the fabric. Such behavior is sometimes termed “water resistant.” However, the last term generally implies a lesser degree of water repellency and further can be confused with the chemical use of “water resistant” to refer to coatings which are chemically stable to water or which will not be washed off by water. Hydrophobicizing topical treatments are incapable of providing the necessary degree of water repellency as that term is used herein.
Waxes and wax-like organic compounds have often been used to provide limited degrees of water repellency. For example, textile fabrics may first be scoured with a soap solution and then treated with a composition which may include zinc and calcium stearates as well as sodium soaps. The long chain carboxylic acid hydrophobic compounds provide a limited amount of water repellency. It is also possible to render fabrics liquid resistant by treating the fabric with commercially available silicones, for example poly(dimethylsiloxane). In tenting fabrics, use is commonly made of paraffin waxes, chlorinated paraffin waxes, and ethylene/vinyl acetate copolymer waxes. Typical of such formulations are those disclosed in U.S. Pat. No. 4,027,062, a wax-based organic solvent-borne system; and U.S. Pat. No. 4,833,006, which employs a wax-based, organic solvent-borne system further containing an unblocked polyisocyanate as an adhesion promoter. The use of the unblocked isocyanate is said to decrease the peeling or flaking off of the coating as compared to wax-based systems employing blocked isocyanate-terminated prepolymers as disclosed in U.S. Pat. No. 4,594,286. Such treated fabrics have a coarse, waxy hand and feel, exhibit little water vapor permeability, are not resistant to organic solvents, and are limited in the manner in which they can be printed.
To overcome problems associated with water absorption and stain resistance, particularly in upholstery materials, resort has been made to synthetic leathers and polyvinylchloride (vinyl) coated fabrics. However, these fabrics do not have the hand or feel of cloth, and in general, are difficult and in many cases impossible to print economically. Moreover, although attempts have been made to render such materials water vapor permeable, these attempts have met with only very limited success, as evidenced by the failure of synthetic leather to displace real leather in high quality seating and footwear. For example, U.S. Pat. No. 4,507,413 discloses leather-like coatings prepared from an aqueous dispersion of a blocked, isocyanate-terminated polyurethane containing a water soluble thickener. The top coating is coated onto a release paper, cured with diamine, and then bonded with the aid of a bonding coat to a fabric support. Following removal of the release paper, a grained, leather-like coating is obtained. In U.S. Pat. No. 5,177,141, similar coatings are disclosed which, in addition, require a water immiscible solvent to be dispersed with the polyurethane, and further requires the presence of a hydrophilic polyisocyanate to promote adhesion to the textile substrate. The presence of the water-immiscible solvent produces a pore-containing material by evaporative coagulation, leading to high water vapor permeability.
Although the treating and coating methods discussed previously may assist in rendering the fabric partially liquid and/or stain resistant, the leather-like appearance of fabrics coated as disclosed by U.S. Pat. Nos. 4,507,413 and 5,177,141 is not desired in many fabric applications. Despite their higher water vapor permeability as compared to earlier generation synthetic leathers, such products are still uncomfortable in many seating upholstery applications. Furthermore, fabrics treated or coated with wax-like polymer or wax emulsions cannot be satisfactorily printed. The treated liquid resistant fabrics may refuse to accept or become incompatible with the application of color dyes. The polymeric coated liquid resistant fabrics cannot be transfer printed because the heat required in the printing process generally causes the polymeric coating to melt or deform. Thus, if a fabric with a particular design or logo is required, the textile fabric must be printed first by traditional methods, following which it may be treated or polymer coated. However, the polymer coating generally obscures the design due to its thickness and opacity, even when non-pigmented vinyl, for example, is used.
Applications of relatively small amounts of fluorochemicals such as the well known SCOTCHGUARD™ and similar compounds also may confer a limited degree of both water resistance and stain resistance, as discussed previously. However, for optimal water repellency, it has proven necessary to coat fabrics with thick polymeric coatings which completely destroy the hand and feel of the fabric. Examples include vinyl boat covers, where the fabric backing is rendered water resistant by application of considerable quantities of polyvinylchloride latex or the thermoforming of a polyvinyl film onto the fabric. The fabric no longer has the hand and feel of fabric, but is plastic-like. Application of polyurethane films in the melt has also been practiced, with similar results. However, unless aliphatic isocyanate-based polyurethanes are utilized, the coated fabric will rapidly weather.
Coatings of polyurethanes or polyurethane ureas have been disclosed in numerous patents and publications. However, the majority of these coatings, such as those previously described, produce fabrics whose hand and feel is not acceptable, i.e. are synthetic leather-like in appearance. Moreover, in producing non-leather-like fabrics coated with polyurethane, it is generally necessary to dissolve the polyurethane into a solvent, and apply this solution to the fabric. Polyurethane lattices, in general, have not been used to provide a fabric with a soft feel, because the prepolymer viscosity of polyurethanes necessary to provide soft coatings is so high that dispersions cannot be prepared. Thus, solvent-borne polyurethanes have been used. Unfortunately, it is increasingly difficult to utilize solvent-borne coatings of any kind in both industrial and domestic applications due to pollution laws. Examples of the foregoing coatings are disclosed in Japanese patent JP 06108365 A2, “Moisture Permeable Water-Resistant Polyurethane-Coated Fabrics And Their Manufacture”; U.S. Pat. No. 5,306,764, “Water Dispersable Polyurethane-Urea Coatings And Their Preparation”; Japanese patent JP 06031845, “Manufacture of Water-Resistant Moisture-Permeable Laminated Fabrics”; European published application EP 525671 A1, “Water-Borne Resin Compositions and Automobile Interior Fabrics Coated With Same”; Japanese patent 03-195737 A2, “Aqueous Po

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Treated textile fabric does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Treated textile fabric, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Treated textile fabric will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2437318

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.