Surgery – Miscellaneous – Methods
Reexamination Certificate
1998-07-29
2001-07-17
Nguyen, Dinh X. (Department: 3738)
Surgery
Miscellaneous
Methods
C600S016000, C600S037000
Reexamination Certificate
active
06260552
ABSTRACT:
FIELD OF THE INVENTION
The present invention pertains to the field of apparatus for treatment of a failing heart. In particular, the apparatus of the present invention is directed toward implanting a device for reducing wall stress in the failing heart.
BACKGROUND OF THE INVENTION
The syndrome of heart failure is a common course for the progression of many forms of heart disease. Heart failure may be considered to be the condition in which an abnormality of cardiac function is responsible for the inability of the heart to pump blood at a rate commensurate with the requirements of the metabolizing tissues, or can do so only at an abnormally elevated filling pressure. There are many specific disease processes that can lead to heart failure with a resulting difference in pathophysiology of the failing heart, such as the dilatation of the left ventricular chamber. Etiologies that can lead to this form of failure include idiopathic cardiomyopathy, viral cardiomyopathy, and ischenic cardiomyopathy.
The process of ventricular dilatation is generally the result of chronic volume overload or specific damage to the myocardium. In a normal heart that is exposed to long term increased cardiac output requirements, for example, that of an athlete, there is an adaptive process of ventricular dilation and myocyte hypertrophy. In this way, the heart fully compensates for the increased cardiac output requirements. With damage to the myocardium or chronic volume overload, however, there are increased requirements put on the contracting myocardium to such a level that this compensated state is never achieved and the heart continues to dilate.
The basic problem with a large dilated left ventricle is that there is a significant increase in wall tension and/or stress both during diastolic filling and during systolic contraction. In a normal heart, the adaptation of muscle hypertrophy (thickening) and ventricular dilatation maintain a fairly constant wall tension for systolic contraction. However, in a failing heart, the ongoing dilatation is greater than the hypertrophy and the result is a rising wall tension requirement for systolic contraction. This is felt to be an ongoing insult to the muscle myocyte resulting in further muscle damage. The increase in wall stress is also true for diastolic filling. Additionally, because of the lack of cardiac output, there is generally a rise in ventricular filling pressure from several physiologic mechanisms. Moreover, in diastole there is both a diameter increase and a pressure increase over normal, both contributing to higher wall stress levels. The increase in diastolic wall stress is felt to be the primary contributor to ongoing dilatation of the chamber.
Prior art treatments for heart failure fall into three generally categories. The first being pharmacological, for example, diuretics. The second being assist systems, for example, pumps. Finally, surgical treatments have been experimented with, which are described in more detail below.
With respect to pharmacological treatments, diuretics have been used to reduce the workload of the heart by reducing blood volume and preload. Clinically, preload is defined in several ways including left ventricular end diastolic pressure (LVEDP), or left ventricular end diastolic volume (LVEDV). Physiologically, the preferred definition is the length of stretch of the sarcomere at end diastole. Diuretics reduce extra cellular fluid which builds in congestive heart failure patients increasing preload conditions. Nitrates, arteriolar vasodilators, angiotensin converting enzyme inhibitors have been used to treat heart failure through the reduction of cardiac workload through the reduction of afterload. Afterload may be defined as the tension or stress required in the wall of the ventricle during ejection. Inotropes such as digoxin are cardiac glycosides and function to increase cardiac output by increasing the force and speed of cardiac muscle contraction. These drug therapies offer some beneficial effects but do not stop the progression of the disease.
Assist devices include, for example, mechanical pumps. Mechanical pumps reduce the load on the heart by performing all or part of the pumping function normally done by the heart. Currently, mechanical pumps are used to sustain the patient while a donor heart for transplantation becomes available for the patient.
There are at least three surgical procedures for treatment of heart failure: 1) heart transplant; 2) dynamic cardiomyoplasty; and 3) the Batista partial left ventriculectomy. Heart transplantation has serious limitations including restricted availability of organs and adverse effects of immunosuppressive therapies required following heart transplantation. Cardiomyoplasty includes wrapping the heart with skeletal muscle and electrically stimulating the muscle to contract synchronously with the heart in order to help the pumping function of the heart. The Batista partial left ventriculectomy includes surgically remodeling the left ventricle by removing a segment of the muscular wall. This procedure reduces the diameter of the dilated heart, which in turn reduces the loading of the heart. However, this extremely invasive procedure reduces muscle mass of the heart.
SUMMARY OF THE INVENTION
The present invention relates to methods and devices for placing a transventricular splint to reduce mechanical heart wall muscle stress. Heart wall muscle stress is a stimulus for the initiation and progressive enlargement of the left ventricle in heart failure. Although the primary focus of the methods of the present invention is heart failure and thus placement of a splint on the left ventricle, the methods and devices of the present invention could be used to place a splint or reduce stress in the heart's other chambers.
The transventricular splints placed by the tools and methods of the present invention can reduce heart wall stress throughout the cardiac cycle including end diastole and end systole. Alternately, they can be used to reduce wall stress during the portions of the cardiac cycle not including end systole. The splints which operate throughout the cardiac cycle are referred to herein as “full cycle splints”. Those splints which do not operate to reduce wall stress during end systole are referred to as “restrictive devices” or, more specifically, “restrictive splints”. Splints reduce left ventricle wall stress by altering the geometric shape of the left ventricle.
In the preferred embodiment of the present invention, tools are provided to interconnect oppositely disposed ventricular walls by a transventricular splint, including a tension member and anchors disposed on opposite ends of the tension member. First access is gained to the heart either by opening a patient's chest or less invasively by port or trocar. The points on the ventricular walls to be interconnected by the splint are then identified. The locations are preferably marked. The tension member is then placed to extend between the marked locations. The distance between the marked location is preferably measured. The wall of the ventricles are drawn toward each other. The anchors are secured to the tension member. The tension member is trimmed or cut to size in view of the relative spacing of the anchors. The anchors are then secured to the heart.
In this manner, portions of the walls of the ventricle are fixed in a drawn position reducing the radius of curvature of the majority of the ventricle and thereby reducing the tension within the ventricle wall.
REFERENCES:
patent: Re. 34021 (1992-08-01), Mueller et al.
patent: 4192293 (1980-03-01), Asrican
patent: 4261342 (1981-04-01), Aranguren Duo
patent: 4372293 (1983-02-01), Vijil-Rosales
patent: 4409974 (1983-10-01), Freedland
patent: 4536893 (1985-08-01), Parravicini
patent: 4936857 (1990-06-01), Kulik
patent: 4944753 (1990-07-01), Burgess et al.
patent: 4960424 (1990-10-01), Grooters
patent: 4997431 (1991-03-01), Isner et al.
patent: 5106386 (1992-04-01), Isner et al.
patent: 5131905 (1992-07-01), Grooters
patent: 5169381 (1992-12-01), Snyders
pate
Keith Peter T.
Kusz David A.
Mortier Todd J.
Paulson Thomas M.
Schweich, Jr. Cyril J.
Finnegan Henderson Farabow Garrett & Dunner L.L.P.
Myocor, Inc.
Nguyen Dinh X.
LandOfFree
Transventricular implant tools and devices does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Transventricular implant tools and devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Transventricular implant tools and devices will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2508594