Sheet feeding or delivering – Delivering – With transfer means between conveyor and receiver
Reexamination Certificate
1999-05-13
2001-11-20
Nguyen, John Q. (Department: 3653)
Sheet feeding or delivering
Delivering
With transfer means between conveyor and receiver
C271S198000, C271S276000
Reexamination Certificate
active
06318719
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a transported-object stacking apparatus.
2. Description of the Related Art
Conventionally, in a transported-object stacking apparatus for stacking sheetlike transported objects one by one, a high-speed conveyor running at high speed and a low-speed conveyor running at low speed are arranged adjacent to each other, while a speed-reducing section is provided at the entrance of the low-speed conveyor. Objects transported on the high-speed conveyor are reduced in speed during transfer to the low-speed conveyor and are stacked on the low-speed conveyor.
However, in the conventional transported-object stacking apparatus, the front end of an object transported at high speed by the high-speed conveyor may collide with a rear portion of the preceding object transported at low speed by the low-speed conveyor, potentially resulting in jamming of transported objects.
Since the angle of a transported object entering the speed-reducing section, i.e., the angle of entry, is difficult to adjust, the preceding transported object may be hit hard by the front end of the following transported object. As a result, the surface of the preceding transported object may be damaged, rendering the object defective. Particularly, when a transported object is lightweight, the transported object enters the speed-reducing section at a relatively high speed. As a result, the posture of the transported object becomes very unstable during entry into the speed-reducing section.
To avoid such a postural instability, an object may be transported while being held between the high-speed conveyor and a guide belt running at a speed identical to that of the high-speed conveyor. However, this causes variations in, for example, positioning or timing curing transfer of a transported object from the high-speed conveyor to the low-speed conveyor.
To avoid such variations, the traveling speed of the high-speed conveyor may be decreased, or the span between transported objects may be increased. In such a case, however, the throughput of the transported-object stacking apparatus is impaired accordingly.
SUMMARY OF THE INVENTION
An object of the present invention is to solve the above-mentioned problems in the conventional transported-object stacking apparatus and to provide a transported-object stacking apparatus capable of preventing both jamming of transported objects and rendering an object defective without impairment of throughput.
To achieve the above object, a transported-object stacking apparatus according to the present invention comprises first fluid discharge means and second fluid discharge means. The first fluid discharge means is disposed on one side of a transported object and is adapted to discharge working fluid in order to press the transported object against transporting means. The second fluid discharge means is disposed downstream from the first fluid discharge means with respect, to the direction of transport of the transported object and on the other side of the transported object, and is adapted to discharge working fluid toward a rear half portion of the transported object in order to separate the transported object from the transporting means.
In this case, when working fluid is discharged from the first fluid discharge means, an object transported by the transporting means is pressed against the transporting means. Subsequently, when working fluid is discharged from the second fluid discharge means toward a rear half portion of the transported object, the transported object is separated from the transporting means.
Accordingly, the transported object can assume a very stable posture and thus can be constantly stacked in a magazine at a predetermined position.
Since the transported object to be stacked is inclined, two consecutive transported objects can be free from such a collision that the preceding transported object is hit hard by the front end of the following transported object, thereby preventing jamming of transported objects.
Another transported-object stacking apparatus according to the present invention comprises first transporting means, second transporting means, fluid discharge means, and fluid inversion means. The first transporting means is adapted to transport a transported object and travels on one side of the transported object. The second transporting means is adapted to transport the transported object and travels on the other side of the transported object. The fluid discharge means is disposed on one side of the transported object and is adapted to discharge working fluid. The fluid inversion means is disposed on the other side of the transported object, and has an entrance port for introducing thereinto working fluid discharged from the fluid discharge means and a discharge port for discharging therefrom working fluid introduced through the entrance port. The discharge port is located downstream of the entrance port with respect to the direction of transport of the transported object.
In this case, when working fluid is discharged from the fluid discharge means on one side of the transported object, the object transported by the first and second transporting means is pressed against the second transporting means. Subsequently, when the rear end of the transported object passes through a gap between the second transporting means and the fluid discharge means, working fluid discharged from the fluid discharge means enters the fluid inversion means through the entrance port and is discharged through the discharge port on the downstream side with respect to the direction of transport of the transported object to thereby press a rear end portion of the transported object downward.
Accordingly, the object is transported while being held between the first and second transporting means. Subsequently, the object is transported while being pressed against the second transporting means by means of working fluid. Then, the transported object is forcibly released from the second transporting means by means of working fluid discharged from the discharge port. Accordingly, the transported object can assume a very stable posture in a stacking region and thus can be constantly stacked in a magazine at a predetermined position.
Since the transported object to be stacked is inclined to thereby establish a wide gap between the second transporting means and the rear end of the transported object, two consecutive transported objects can be free from such a collision that the preceding transported object is hit hard by the front end of the following transported object, thereby preventing jamming of transported objects.
Still another transported-object stacking apparatus further comprises positioning means for positioning the fluid inversion means in the direction of transport of the transported object.
Since the fluid inversion means and the fluid discharge means can be positioned in the direction of transport of objects, the angle of entry of a transported object into the stacking region can be easily adjusted. Accordingly, two consecutive transported objects can be free from such a collision that the preceding transported object is hit hard by the front end of the following transported object. As a result, the surface of the preceding transported object cannot be damaged, so that rendering an object defective can be prevented. Particularly, when the surface of transported object bears printing, there can be reliably prevented an impairment in printed image quality which would otherwise result from damage to the printed surface.
Further, since transported objects can be stably stacked, there is no need for reducing the traveling speed of the first and second transporting means or increasing the interval between transported objects. Thus, the throughput of the transported-object stacking apparatus is not impaired.
REFERENCES:
patent: 4395038 (1983-07-01), Fitzpatrick et al.
Lorusso & Loud
Nguyen John Q.
Tetra Laval Holdings & Finance S.A.
LandOfFree
Transported-object stacking apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Transported-object stacking apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Transported-object stacking apparatus will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2614750