transportation and active temperature control of integrated...

Electricity: measuring and testing – Fault detecting in electric circuits and of electric components – Of individual circuit component or element

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06304093

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates in general to the field of transporting and controlling the temperature of integrated circuits (“ICs”) and more particularly to an improved apparatus, system, and method of transporting ICs and controlling the temperature of ICs for testing.
2. Description of the Related Art
Previous systems for transporting IC devices to a test site use a carrier-conveyor system. The IC device is taken from a tray on which the IC device is resting in a “live bug” position (connections down) by a “pick and place” handling system. Typically, the pick and place handling system uses a vacuum handling device to pick up the IC device from its tray and place the IC device on a carrier, still in a live bug position. The carrier slides or moves through the conveyor towards the test site.
For testing at non-ambient temperature conditions, the carrier passes through or is contained within a passive convection heating or cooling apparatus, such as a convection oven or “soak site.” The number of carriers in the conveyor, combined with the time spent at the test site, defines how long the convection apparatus is used to bring the IC device to the temperature desired for testing. A characterization process is typically used to determine whether the IC device has reached the desired test temperature by the time it reaches the test site. The characterization process usually requires the use of special thermal test devices with an external temperature measuring apparatus. The external temperature measuring apparatus may include thermocouple sensors which can read a thermocouple voltage and translate it into a temperature reading. Once the carrier reaches the test site, the IC device is typically removed from the carrier by a second vacuum handling device and is placed into a test site socket, with the necessary socketing force. In some systems, the IC device is not removed from the carrier. Instead, the carrier is placed under a contactor and the IC device is pressed against the test site socket, using a pressing mechanism. This approach is popular with memory IC handling systems or systems which achieve a high degree of parallel testing.
After testing, the IC device is placed back into the carrier by the vacuum handling device and the carrier continues to move through the conveyor system. In some systems, the conveyor system continues through a second convection apparatus, called a “de-soak chamber.” The de-soak chamber is used to force the temperature of the IC device back to a safe handling temperature or above the dew point temperature.
That is, back to a safe handling temperature when the testing is hot, and above the dew point temperature when the testing is cold.
After exiting the de-soak chamber, if any, the vacuum handling device removes the IC device from the carrier and places it into a tray, typically a JEDEC (Joint Electronic Device Engineering Council) compliant tray. The particular tray used depends on whether the IC device successfully passed the testing process. Depending on the test results, the trays are dispatched to their next process location.
A disadvantage of such a system is that there is no provision to maintain the device under test (“DUT”) temperature while the test is underway. Heat can be lost in some cases through the test site socket. The test can also cause the IC device to heat itself. For some critical, speed dependent tests, the resulting variation in the test temperature setpoint can frequently impair the quality of the test result.
Another disadvantage is that the complexity of and the number of moving parts of the soak and de-soak chambers can impair reliability of the handling system. Exposing moving parts, which may have different thermal expansion coefficients, to test temperatures complicates the design of the parts and subjects the operation to considerable wear. Passive convection heating and cooling apparatuses require that the moving parts of the apparatus be exposed to the sometimes extreme temperatures experienced by the IC device. These temperatures may affect the conveyor mechanism and further impair reliable operation. To remove an obstacle, clear a jam or service the system requires that the soak chamber be brought to safe handling temperatures. This consumes valuable production equipment utilization time. In the case of IC devices with a large thermal capacitance, the capacity requirements for the soak chamber are increased, which further aggravates the complexity and temperature exposure reliability concerns.
Therefore, a need has arisen for a system for transporting an IC device to a position for being tested which reduces the complexity of the transfer system. A further need exists for a system for transporting an IC device to a position for being tested which reduces the temperature exposure of the transport mechanism. A further need exists for a system which reduces the lost utilization time when the transport mechanism requires servicing. Another need exists for a system for efficiently bringing an IC device to a desired temperature for testing.
SUMMARY OF THE INVENTION
Briefly, in accordance with one aspect of the present invention, there is provided a system for handling a device under test (“DUT”). The system includes a carrier, a receptacle, a tooling system, and a lift mechanism. The carrier is for supporting the DUT, and the carrier has an aperture which is adapted to be disposed below at least a portion of the DUT. The receptacle is for supporting the carrier. The receptacle also has an aperture, and the receptacle is adapted to maintain the alignment of the carrier such that the carrier aperture overlaps at least part of the receptacle aperture. The tooling system is for conductively controlling a temperature of the DUT and for supporting the DUT. The lift mechanism is coupled to the tooling system.
The lift mechanism is for raising and lowering the tooling system when both the receptacle aperture and the carrier aperture are vertically aligned with the tooling system such that at least a portion of the tooling system can penetrate both the receptacle aperture and the carrier aperture and contact the DUT. The lift mechanism is further coupled to the receptacle to facilitate the vertical alignment. When the tooling system is raised to contact the DUT, the lift mechanism further raises the tooling system to raise the DUT above the carrier such that the DUT is not in direct contact with the carrier.
Briefly, in accordance with another aspect of the present invention, there is provided a method of handling a device under test (“DUT”). The method includes (i) supporting the DUT with a structure adapted to support the weight of the DUT, (ii) contacting the DUT with a conductive temperature control system, (iii) vertically raising the supported DUT off of the structure so that the DUT is not in direct contact with the structure, and (iv) maintaining contact between the DUT and the conductive temperature control system while the DUT is not in direct contact with the structure.
Briefly, in accordance with another aspect of the present invention, there is provided a system for handling a device under test (“DUT”). The system includes support means, a transport device, temperature controlling means, and lifting means. The support means is for supporting the DUT and it includes an aperture. The transport device is coupled to the support means and is for moving the DUT. The temperature controlling means is for controlling the temperature of the DUT with conduction. The lifting means is for lifting the DUT above the support means such that the DUT is not in direct contact with the support means.
Briefly, in accordance with another aspect of the present invention, there is provided a tooling system for handling a device under test (“DUT”). The tooling system includes a heat exchanger and a contact pad. The tooling system is adapted to apply a first force for contacting the heat exchanger to the DUT. The tooling system is adapted to apply a second force for contacting the contact pa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

transportation and active temperature control of integrated... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with transportation and active temperature control of integrated..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and transportation and active temperature control of integrated... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2550960

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.