Transport module for the moving of heavy loads

Motor vehicles – Special driving device – Stepper

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C180S008100, C180S008600

Reexamination Certificate

active

06202774

ABSTRACT:

FIELD AND BACKGROUND OF THE INVENTION
The invention relates to a transport module with which heavy loads can be moved over a floor.
Various systems are known and in use for the horizontal transport of large heavy loads. The principles used are for example:
a) shifting the heavy load on sliding surfaces with which the supports of the heavy load ere provided;
b) transport on wheels with the aid of transport carriages that have tires or steel wheels rolling on rails;
c) shifting a load that is suspended by the use of pneumostatic or hydrostatic bearings;
d) travel in which the load is both raised and transported horizontally.
Horizontal load movement can take place continuously in cases b) and c). In case a) it is at least discontinuous. In case d) the movement is theoretically discontinuous, Each of the known solutions for the horizontal transport of large heavy loads has certain disadvantages. For example, high driving forces are required when shifting on sliding surfaces. Energy consumption is relatively high, especially when shifting on sliding surfaces or on a cushion and when moving. The drives are expensive and cumbersome and impose high requirements on floor quality.
SUMMARY OF THE INVENTION
Hence, the basic object of the invention is to provide a transport module that can be used as an independent unit individually or together with other similar modules for moving a heavy load, that allows moving the load with a relatively low energy consumption, and that imposes no special requirements on the floor.
A transport module of the invention has as a main part a frame on which the load can be placed and that can be placed on the floor. As a second main part, the transport module has a support that can likewise be placed on the floor. By means of an actuator that is part of the frame or the support, the force applied to the floor by the frame can be reduced by increasing the force with which the support contacts the floor and the force with which the support contacts the floor can be reduced below its own weight by increasing the force with which the frame contacts the floor. The frame and the support have a first pair of steep paths formed by inclined surfaces of wedge-shaped components of the module, by which the frame can be supported on the support. By means of the actuator, the normal force between the frame and the floor, in other words the force directed against the floor by the frame and hence the frictional force between the floor and the frame, can be reduced to the point where the frame, and the load with it, travels along the sloping path of the support and is thus moved horizontally. At this time the frame is raised by the actuator further and further relative to the support. The speed with which the frame is raised can be used to control the speed at which the load moves. Normally the frame does not lift off the floor, since the horizontal force produced by the sloping paths and the combined weight of the frame and the load overcomes the force of friction between the frame and the floor even before the frame lifts off the floor. Energy consumption is therefore lower than in a form of movement in which the load is raised completely from the floor. It is also less than in a type of movement in which the normal force and consequently the force of friction is not reduced.
The frame and the support have a second pair of sloping paths by which the support can be supported on the frame., The force with which the support contacts the floor can also be reduced by the actuator so that the support always follows the frame. A heavy load can therefore be moved discontinuously in a transport module according to the invention.
A transport module according to the invention can be used individually, but preferably together with one or more additional transport modules to move a load. The actuators of the various transport modules are then controlled relative to one another.
The support can support the frame located above it in a simple fashion. The support, on the other hand, hangs from the frame when it is moved. For this purpose, the frame uses second guide elements to grip beneath first guide elements located on opposite sides of the support. The second pair of steep, or sloping, paths is located on the first and second guide elements.
In the partial step of the movement in which the load is shifted, the weight of the load and at least a portion of the weight of the frame must be supported by the support. This is accomplished by means of the first pair of steep paths. In order not to allow the load on the parts to become too high, especially the pressure per unit area, the first pair of steep paths is therefore advantageously formed by a pair of steep surfaces that slide on one another. In the partial step in which the support follows the frame, at least a portion of the weight of the support is conducted through the second pair of steep paths into the frame and through the latter into the floor. The forces that are transmitted through the second pair of steep paths are therefore much smaller than the forces that are transmitted by the first pair of steep paths. Advantageously, therefore, the first pair of steep paths is formed by a steep surface and by rolling bodies that roll on it. Therefore the support moves even when the load on the floor exerted by the support is reduced slightly and the frictional force between the support and the floor is reduced accordingly. Three rollers for suspending the support on the frame will suffice if the rollers are arranged in accordance with other features of the invention.
Because the floor underneath the transport module can be uneven, a universal joint is provided in the support or in the frame that allows the corresponding guide block with the steep paths to tilt with respect to the other parts of the frame or the support to allow compensation for unevenness of the floor.
According to a feature of the invention, the actuator is associated with the support, and can be used to change the relative vertical position of a guide block that includes the steep paths of the support with respect to a floor-supporting body of the support. The association of the actuator with the support has the advantage that the guide blocks and the steep paths of the support and frame can be relatively far from the floor. The greater the distance between the guide blocks with the steep paths from the floor, the better they are protected against contamination.
The actuator is advantageously arranged in such fashion that its adjusting movement takes place at least approximately simply vertically with respect to the floor. Thus, adjustment of the actuator alone does not produce any horizontal movement of the frame or the support that would be superimposed on the movement along the steep paths. The actuator is preferably formed by a double-acting hydraulic piston-cylinder unit, since high forces can be produced even with relatively small hydraulic drive components. The use of a hydraulic piston-cylinder unit as an actuator therefore permits a compact design for the transport module.
By designing the transport module to shift a heavy load in a straight line, it is also possible to shift the heavy load parallel. Therefore, the load can be moved while retaining its alignment in a plane. This is accomplished by virtue of the fact that a first guide block of the frame with its steep paths and a second guide block of the support with its steep paths can be rotated in common around a vertical axis relative to a floor support body. Preferably, the two guide blocks can be rotated in an angle range of at least 270° relative to the floor support body of the frame so that a load can move parallel to a plane at every point.
The movement possibilities for a load that rests on a plurality of transport modules according to the invention are further expanded by the fact that the transport modules are designed according to further features of the invention. A load can then be rotated or can round a curve, in other words the alignment of a load can be changed. It is important for thi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Transport module for the moving of heavy loads does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Transport module for the moving of heavy loads, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Transport module for the moving of heavy loads will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2509788

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.