Radiant energy – Supported for nonsignalling objects of irradiation
Reexamination Certificate
1998-11-10
2001-03-06
Polutta, Mark O. (Department: 3735)
Radiant energy
Supported for nonsignalling objects of irradiation
Reexamination Certificate
active
06198106
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to flexible, sterile containers used for storing and mixing medicaments and diluent liquids in a sterile environment and for dispensing mixtures therefrom. More particularly, the container is manufactured from film webs using modular compartment-forming stations. The container is manufactured to include sacrificial ports by which the container is supported and transported through modular filling isolators.
BACKGROUND OF THE INVENTION
Various medicament (drug) solutions are commonly administered intravenously (via IV) from sterile containers to patients. Oftentimes, such solutions comprise a mixed combination of a liquid diluent, e.g., an aqueous dextrose or NaCl solution, and a medicament. Desirably, the medicament and diluent are stored separately in the container under aseptic conditions and are not mixed together until immediately prior to use so as to prevent degradation of the final product. Common packaging of the diluent and medicament is often further complicated by the character of the medicament which may be a powder sensitive to moisture contamination or a powder or liquid sensitive to degradation under light or oxygen exposure.
Accordingly, various medicaments, such as antibiotics, which become unstable with time in solution have been separately stored in moisture and gas-impermeable vials, containers, or the like prior to their use. Before being administered to a patient, medicaments stored in this fashion must be mixed, or diluted in, physiological solutions or diluents which are also preserved separately. While able to maintain medicament stability and effectiveness, separate component storage is cumbersome and involves the risk of bacteriological contamination during handling, mixing, and subsequent administration to a patient. Accordingly, medical containers have been developed which include a compartment for storing an unstable medicament and a compartment which contains a diluent liquid. Immediately prior to IV administration to a patient, the compartments are placed in communication with one another so that the contents can be mixed together aseptically.
Multiple compartment containers, which allow separate storage of liquid diluents and medicaments are known. Such containers are disclosed, for example, in U.S. Pat. No. 4,608,043 to Larkin and U.S. Pat. No. 5,176,634 to Smith, et al. U.S. Pat. Nos. 4,608,043 and 5,176,634 are expressly incorporated herein in their entirety by reference. The compartments of the containers disclosed in the foregoing patents are separated from one another by frangible heat seals. The seals are ruptured by manipulation of the container so that the contents of the compartments can be mixed together to thereby form a solution which is delivered to the patient through a standard IV arrangement.
Solution containers on the market today are generally manufactured of materials comprising PVC plastic. PVC material is generally quite murky in aspect, making it difficult to inspect the contents of a container manufactured of such material. Consequently, inspecting such containers for leaks and moisture contamination is quite difficult, as is verifying whether complete mixing of the medicament and diluent has taken place prior to administration to a patient. In addition, various hazardous chemicals are used in the manufacture of PVC material which must be disposed of in an environmentally safe manner. PVC containers must be carefully disposed of following their use, because PVC emits a toxic gas when incinerated and includes a toxic plasticizer that can leach into the surrounding environment if the container is buried in a land fill. This toxic plasticizer is also able to leach into IV solutions, making PVC containers unsuitable for use with several types of drugs.
The medicament compartment of such multi-compartment containers is desirably protected from moisture and atmospheric gasses as well as from exposure to UV and ambient radiation in order to avoid degradation of the medication contained therein. One known method of protecting the medicament compartment from, for example, moisture and oxygen contamination is disclosed in U.S. Pat. No. 5,267,646 to Inouye, et al., in which the medicament compartment is surrounded by a secondary compartment containing a desiccant and an oxygen absorber. Free oxygen and moisture vapor is allowed to penetrate the material of the secondary compartment, and is absorbed by the desiccant and oxygen scrubber before it is able to affect the material of the medicament compartment.
Although this method is able to provide some degree of protection for the medicament compartment against free oxygen and moisture, the method requires an additional layer of material (a secondary compartment) to be provided around the medicament, making it more difficult to inspect the contents of the medicament compartment prior to reconstitution. Moreover, no protection is provided against the effects of UV or ambient light degradation of the contents of the medicament compartment.
U.S. Pat. No. 5,176,634 to Smith et al. discloses a medical container having multiple compartments separated by peelable seals which may be ruptured by manually applying pressure to the exterior of the container. The container is formed of two sheets of flexible materials which are sealed together along their perimeter. Separate diluent and medicament compartments are formed in the container by frangible heat seals. The rear sheet is impermeable to water vapor and is constructed of a laminated material having an inner layer of polypropylene, a middle layer of aluminum foil and an outer layer of polyester film. Vapor impermeability of the rear sheet extends the shelf life of the product by reducing, by half, the permeation of diluent vapor from the container, and permeation of vapor from the atmosphere into the medicament compartment. Additional reduction in vapor permeability is provided for the medicament compartment by peelably affixing a third sheet of laminated material which is identical to the rear sheet, over the container front sheet in the region of the medicament compartment. This third sheet of laminated material is sized to cover the medicament compartment and, in combination with the rear sheet, provides a vapor impermeable enclosure.
However, once the vapor impermeable third sheet is peeled-away from the medicament compartment, the medicament compartment is no longer enclosed and therefore susceptible to vapor permeation from the atmosphere. In addition, moisture vapor is able to migrate from the diluent compartment into the medicament compartment through the material of the peelable seal which separates them. Because the vapor impermeable covering is routinely peeled-away from the medicament compartment during a hospital's incoming inspection procedure, long term storage of such containers is problematic. In cases where the medicament is a powder, highly susceptible to degradation by moisture, the shelf life of a container that has had its vapor impermeable covering removed is often no more than a few days.
In view of the foregoing, it can be seen that there is a need for an improvement over prior art containers in that there is a need for medical containers that are environmentally safe to manufacture and dispose of. Such containers should also be able to protect powdered and other sensitive medicaments from moisture and atmospheric gasses, while, at the same time, allowing easy visual access to the medicament compartment contents. Protection from UV and visible spectrum radiation is also desired.
In various prior art multiple compartment containers simple frangible, or peelable, seals are used to divide the medicament and diluent compartments to preclude the inadvertent delivery of any of the components prior to mixing. Such simple seals are formed across the container in its width direction, and have a uniform cross-sectional thickness and length throughout the entire seal. When the container is manipulated in order to rupture the seals, and, thereby, mix the medicament and di
Barney Ward W.
Gharibian Noel
Harvey Douglas G.
Pool Scott L.
Sacca Giuseppe
B. Braun Medical Inc.
Cho David J.
Christie Parker & Hale LLP
Polutta Mark O.
LandOfFree
Transport and sterilization carrier for flexible, multiple... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Transport and sterilization carrier for flexible, multiple..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Transport and sterilization carrier for flexible, multiple... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2460438